zoukankan      html  css  js  c++  java
  • hdu 3944 dp?

    DP?

    Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 128000/128000 K (Java/Others)
    Total Submission(s): 1804    Accepted Submission(s): 595


    Problem Description

    Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0,1,2,…and the column from left to right 0,1,2,….If using C(n,k) represents the number of row n, column k. The Yang Hui Triangle has a regular pattern as follows.
    C(n,0)=C(n,n)=1 (n ≥ 0) 
    C(n,k)=C(n-1,k-1)+C(n-1,k) (0<k<n)
    Write a program that calculates the minimum sum of numbers passed on a route that starts at the top and ends at row n, column k. Each step can go either straight down or diagonally down to the right like figure 2.
    As the answer may be very large, you only need to output the answer mod p which is a prime.
     
    Input
    Input to the problem will consists of series of up to 100000 data sets. For each data there is a line contains three integers n, k(0<=k<=n<10^9) p(p<10^4 and p is a prime) . Input is terminated by end-of-file.
     
    Output
    For every test case, you should output "Case #C: " first, where C indicates the case number and starts at 1.Then output the minimum sum mod p.
     
    Sample Input
    1 1 2
    4 2 7
     
    Sample Output
    Case #1: 0
    Case #2: 5
     
    Author
    phyxnj@UESTC
     
    Source
     
     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<vector>
     6 using namespace std;
     7 typedef __int64 LL;
     8 vector<LL> dp[10000];
     9 bool s[10001];
    10 void init()
    11 {
    12     LL i,p,j;
    13     memset(s,false,sizeof(s));
    14     for(i=2;i<=10000;i++){
    15         if(s[i]==false)
    16         for(j=i*2;j<=10000;j=j+i)
    17         s[j]=true;
    18     }
    19     s[1]=true;
    20     for(i=0;i<10000;i++) dp[i].clear();
    21     for(p=1;p<10000;p++)
    22     {
    23         if(s[p]==true)continue;
    24         dp[p].push_back(1);
    25         for(i=1;i<=p;i++)
    26         {
    27             dp[p].push_back((dp[p][i-1]*i)%p);
    28         }
    29     }
    30 }
    31 LL pow_mod(LL a,LL n,LL p)
    32 {
    33     LL ans=1;
    34     while(n){
    35         if(n&1) ans=(ans*a)%p;
    36         n=n>>1;
    37         a=(a*a)%p;
    38     }
    39     return ans;
    40 }
    41 LL C(LL a,LL b,LL p)
    42 {
    43     if(a<b)return 0;
    44     if(a==b) return 1;
    45     if(b>a-b) b=a-b;
    46     LL sum1,sum2;
    47     sum1=dp[p][a];
    48     sum2=(dp[p][b]*dp[p][a-b])%p;
    49     LL ans=(sum1*pow_mod(sum2,p-2,p))%p;
    50     return ans;
    51 }
    52 LL Lucas(LL n,LL m,LL p)
    53 {
    54     LL ans=1;
    55     while(n&&m&&p){
    56         ans=(ans*C(n%p,m%p,p))%p;
    57         n=n/p;
    58         m=m/p;
    59     }
    60     return ans;
    61 }
    62 int main()
    63 {
    64     init();
    65     LL n,k,p;
    66     int t=0;
    67     while(scanf("%I64d%I64d%I64d",&n,&k,&p)>0){
    68         printf("Case #%d: ",++t);
    69         if(k>n-k) k=n-k;
    70         LL ans=Lucas(n+1,k,p);
    71         printf("%I64d
    ",(ans+(n-k))%p);
    72     }
    73     return 0;
    74 }
  • 相关阅读:
    VS2015快捷键
    layui radio 监听
    jsvascript === 和==的区别
    bootstrap table checkbox 根据值选中、禁用等
    table 中 display为 block 时 tbody 失去宽度
    打包成Zip
    Server.MapPath()用法
    JS比较当前时间是否在指定时间段内
    从多张表获取数据,重组DataTable,根据重组路径,打包下载文件。
    checkbox 根据值选中
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3705595.html
Copyright © 2011-2022 走看看