zoukankan      html  css  js  c++  java
  • hdu 3944 dp?

    DP?

    Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 128000/128000 K (Java/Others)
    Total Submission(s): 1804    Accepted Submission(s): 595


    Problem Description

    Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0,1,2,…and the column from left to right 0,1,2,….If using C(n,k) represents the number of row n, column k. The Yang Hui Triangle has a regular pattern as follows.
    C(n,0)=C(n,n)=1 (n ≥ 0) 
    C(n,k)=C(n-1,k-1)+C(n-1,k) (0<k<n)
    Write a program that calculates the minimum sum of numbers passed on a route that starts at the top and ends at row n, column k. Each step can go either straight down or diagonally down to the right like figure 2.
    As the answer may be very large, you only need to output the answer mod p which is a prime.
     
    Input
    Input to the problem will consists of series of up to 100000 data sets. For each data there is a line contains three integers n, k(0<=k<=n<10^9) p(p<10^4 and p is a prime) . Input is terminated by end-of-file.
     
    Output
    For every test case, you should output "Case #C: " first, where C indicates the case number and starts at 1.Then output the minimum sum mod p.
     
    Sample Input
    1 1 2
    4 2 7
     
    Sample Output
    Case #1: 0
    Case #2: 5
     
    Author
    phyxnj@UESTC
     
    Source
     
     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<vector>
     6 using namespace std;
     7 typedef __int64 LL;
     8 vector<LL> dp[10000];
     9 bool s[10001];
    10 void init()
    11 {
    12     LL i,p,j;
    13     memset(s,false,sizeof(s));
    14     for(i=2;i<=10000;i++){
    15         if(s[i]==false)
    16         for(j=i*2;j<=10000;j=j+i)
    17         s[j]=true;
    18     }
    19     s[1]=true;
    20     for(i=0;i<10000;i++) dp[i].clear();
    21     for(p=1;p<10000;p++)
    22     {
    23         if(s[p]==true)continue;
    24         dp[p].push_back(1);
    25         for(i=1;i<=p;i++)
    26         {
    27             dp[p].push_back((dp[p][i-1]*i)%p);
    28         }
    29     }
    30 }
    31 LL pow_mod(LL a,LL n,LL p)
    32 {
    33     LL ans=1;
    34     while(n){
    35         if(n&1) ans=(ans*a)%p;
    36         n=n>>1;
    37         a=(a*a)%p;
    38     }
    39     return ans;
    40 }
    41 LL C(LL a,LL b,LL p)
    42 {
    43     if(a<b)return 0;
    44     if(a==b) return 1;
    45     if(b>a-b) b=a-b;
    46     LL sum1,sum2;
    47     sum1=dp[p][a];
    48     sum2=(dp[p][b]*dp[p][a-b])%p;
    49     LL ans=(sum1*pow_mod(sum2,p-2,p))%p;
    50     return ans;
    51 }
    52 LL Lucas(LL n,LL m,LL p)
    53 {
    54     LL ans=1;
    55     while(n&&m&&p){
    56         ans=(ans*C(n%p,m%p,p))%p;
    57         n=n/p;
    58         m=m/p;
    59     }
    60     return ans;
    61 }
    62 int main()
    63 {
    64     init();
    65     LL n,k,p;
    66     int t=0;
    67     while(scanf("%I64d%I64d%I64d",&n,&k,&p)>0){
    68         printf("Case #%d: ",++t);
    69         if(k>n-k) k=n-k;
    70         LL ans=Lucas(n+1,k,p);
    71         printf("%I64d
    ",(ans+(n-k))%p);
    72     }
    73     return 0;
    74 }
  • 相关阅读:
    python学习笔记(unittest)
    python学习笔记(session)
    python学习笔记(requests)
    jmeter的学习(配置环境)
    Codeforces 576D. Flights for Regular Customers 题解
    Codeforces 1316F. Battalion Strength 题解
    2020年第十一届蓝桥杯省赛J-网络分析(带权并查集)
    第十一届蓝桥杯b组省赛 C.合并检测(内附详细的样例)
    蓝桥杯2020.7月真题走方格(到达终点的不同方案数)(记忆化搜索+DP)
    Codeforces Global Round 11 A. Avoiding Zero(思维构造)
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3705595.html
Copyright © 2011-2022 走看看