zoukankan      html  css  js  c++  java
  • hdu 3944 dp?

    DP?

    Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 128000/128000 K (Java/Others)
    Total Submission(s): 1804    Accepted Submission(s): 595


    Problem Description

    Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0,1,2,…and the column from left to right 0,1,2,….If using C(n,k) represents the number of row n, column k. The Yang Hui Triangle has a regular pattern as follows.
    C(n,0)=C(n,n)=1 (n ≥ 0) 
    C(n,k)=C(n-1,k-1)+C(n-1,k) (0<k<n)
    Write a program that calculates the minimum sum of numbers passed on a route that starts at the top and ends at row n, column k. Each step can go either straight down or diagonally down to the right like figure 2.
    As the answer may be very large, you only need to output the answer mod p which is a prime.
     
    Input
    Input to the problem will consists of series of up to 100000 data sets. For each data there is a line contains three integers n, k(0<=k<=n<10^9) p(p<10^4 and p is a prime) . Input is terminated by end-of-file.
     
    Output
    For every test case, you should output "Case #C: " first, where C indicates the case number and starts at 1.Then output the minimum sum mod p.
     
    Sample Input
    1 1 2
    4 2 7
     
    Sample Output
    Case #1: 0
    Case #2: 5
     
    Author
    phyxnj@UESTC
     
    Source
     
     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<vector>
     6 using namespace std;
     7 typedef __int64 LL;
     8 vector<LL> dp[10000];
     9 bool s[10001];
    10 void init()
    11 {
    12     LL i,p,j;
    13     memset(s,false,sizeof(s));
    14     for(i=2;i<=10000;i++){
    15         if(s[i]==false)
    16         for(j=i*2;j<=10000;j=j+i)
    17         s[j]=true;
    18     }
    19     s[1]=true;
    20     for(i=0;i<10000;i++) dp[i].clear();
    21     for(p=1;p<10000;p++)
    22     {
    23         if(s[p]==true)continue;
    24         dp[p].push_back(1);
    25         for(i=1;i<=p;i++)
    26         {
    27             dp[p].push_back((dp[p][i-1]*i)%p);
    28         }
    29     }
    30 }
    31 LL pow_mod(LL a,LL n,LL p)
    32 {
    33     LL ans=1;
    34     while(n){
    35         if(n&1) ans=(ans*a)%p;
    36         n=n>>1;
    37         a=(a*a)%p;
    38     }
    39     return ans;
    40 }
    41 LL C(LL a,LL b,LL p)
    42 {
    43     if(a<b)return 0;
    44     if(a==b) return 1;
    45     if(b>a-b) b=a-b;
    46     LL sum1,sum2;
    47     sum1=dp[p][a];
    48     sum2=(dp[p][b]*dp[p][a-b])%p;
    49     LL ans=(sum1*pow_mod(sum2,p-2,p))%p;
    50     return ans;
    51 }
    52 LL Lucas(LL n,LL m,LL p)
    53 {
    54     LL ans=1;
    55     while(n&&m&&p){
    56         ans=(ans*C(n%p,m%p,p))%p;
    57         n=n/p;
    58         m=m/p;
    59     }
    60     return ans;
    61 }
    62 int main()
    63 {
    64     init();
    65     LL n,k,p;
    66     int t=0;
    67     while(scanf("%I64d%I64d%I64d",&n,&k,&p)>0){
    68         printf("Case #%d: ",++t);
    69         if(k>n-k) k=n-k;
    70         LL ans=Lucas(n+1,k,p);
    71         printf("%I64d
    ",(ans+(n-k))%p);
    72     }
    73     return 0;
    74 }
  • 相关阅读:
    [zz]Mesos的分析4 支持Hadoop任务级调度
    代理设计模式
    spring初始化
    SpringAOP的切点的声明格式
    SpringAOP的介绍
    SpringIOC创建对象的单例和多例模式
    动态代理
    SpringIOC的自动注入
    SpringAOP的注解方式实现
    cglib动态代理实现流程
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3705595.html
Copyright © 2011-2022 走看看