zoukankan      html  css  js  c++  java
  • hdu 3944 dp?

    DP?

    Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 128000/128000 K (Java/Others)
    Total Submission(s): 1804    Accepted Submission(s): 595


    Problem Description

    Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0,1,2,…and the column from left to right 0,1,2,….If using C(n,k) represents the number of row n, column k. The Yang Hui Triangle has a regular pattern as follows.
    C(n,0)=C(n,n)=1 (n ≥ 0) 
    C(n,k)=C(n-1,k-1)+C(n-1,k) (0<k<n)
    Write a program that calculates the minimum sum of numbers passed on a route that starts at the top and ends at row n, column k. Each step can go either straight down or diagonally down to the right like figure 2.
    As the answer may be very large, you only need to output the answer mod p which is a prime.
     
    Input
    Input to the problem will consists of series of up to 100000 data sets. For each data there is a line contains three integers n, k(0<=k<=n<10^9) p(p<10^4 and p is a prime) . Input is terminated by end-of-file.
     
    Output
    For every test case, you should output "Case #C: " first, where C indicates the case number and starts at 1.Then output the minimum sum mod p.
     
    Sample Input
    1 1 2
    4 2 7
     
    Sample Output
    Case #1: 0
    Case #2: 5
     
    Author
    phyxnj@UESTC
     
    Source
     
     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<vector>
     6 using namespace std;
     7 typedef __int64 LL;
     8 vector<LL> dp[10000];
     9 bool s[10001];
    10 void init()
    11 {
    12     LL i,p,j;
    13     memset(s,false,sizeof(s));
    14     for(i=2;i<=10000;i++){
    15         if(s[i]==false)
    16         for(j=i*2;j<=10000;j=j+i)
    17         s[j]=true;
    18     }
    19     s[1]=true;
    20     for(i=0;i<10000;i++) dp[i].clear();
    21     for(p=1;p<10000;p++)
    22     {
    23         if(s[p]==true)continue;
    24         dp[p].push_back(1);
    25         for(i=1;i<=p;i++)
    26         {
    27             dp[p].push_back((dp[p][i-1]*i)%p);
    28         }
    29     }
    30 }
    31 LL pow_mod(LL a,LL n,LL p)
    32 {
    33     LL ans=1;
    34     while(n){
    35         if(n&1) ans=(ans*a)%p;
    36         n=n>>1;
    37         a=(a*a)%p;
    38     }
    39     return ans;
    40 }
    41 LL C(LL a,LL b,LL p)
    42 {
    43     if(a<b)return 0;
    44     if(a==b) return 1;
    45     if(b>a-b) b=a-b;
    46     LL sum1,sum2;
    47     sum1=dp[p][a];
    48     sum2=(dp[p][b]*dp[p][a-b])%p;
    49     LL ans=(sum1*pow_mod(sum2,p-2,p))%p;
    50     return ans;
    51 }
    52 LL Lucas(LL n,LL m,LL p)
    53 {
    54     LL ans=1;
    55     while(n&&m&&p){
    56         ans=(ans*C(n%p,m%p,p))%p;
    57         n=n/p;
    58         m=m/p;
    59     }
    60     return ans;
    61 }
    62 int main()
    63 {
    64     init();
    65     LL n,k,p;
    66     int t=0;
    67     while(scanf("%I64d%I64d%I64d",&n,&k,&p)>0){
    68         printf("Case #%d: ",++t);
    69         if(k>n-k) k=n-k;
    70         LL ans=Lucas(n+1,k,p);
    71         printf("%I64d
    ",(ans+(n-k))%p);
    72     }
    73     return 0;
    74 }
  • 相关阅读:
    利用ganymed-ssh2远程执行其它Linux机器上的shell命令
    ZooKeeper 笔记(4) 实战应用之【消除单点故障】
    ZooKeeper 笔记(3) 实战应用之【统一配置管理】
    ZooKeeper 笔记(2) 监听数据变化
    ZooKeeper 笔记(1) 安装部署及hello world
    intellij idea 高级用法之:集成JIRA、UML类图插件、集成SSH、集成FTP、Database管理
    hadoop: hive 1.2.0 在mac机上的安装与配置
    mac 下卸载mysql的方法
    mac OS X Yosemite 上编译hadoop 2.6.0/2.7.0及TEZ 0.5.2/0.7.0 注意事项
    hadoop: hbase1.0.1.1 伪分布安装
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3705595.html
Copyright © 2011-2022 走看看