zoukankan      html  css  js  c++  java
  • hdu 3037 Saving Beans

    Saving Beans

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2079    Accepted Submission(s): 748


    Problem Description
    Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

    Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.
     
    Input
    The first line contains one integer T, means the number of cases.

    Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.
     
    Output
    You should output the answer modulo p.
     
    Sample Input
    2
    1 2 5
    2 1 5
     
    Sample Output
    3
    3
    Hint
    Hint For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on. The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are: put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.
     
     
     
    2 3 107 ==>10 ==>C(5,2)
     
    { 0,0
       0,1  1,0
       1,1, 2,0  0,2
       3,0  0,3   1,2  2,1
    }
     
     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<vector>
     6 using namespace std;
     7 typedef __int64 LL;
     8 
     9 LL dp[100002];
    10 
    11 void init(LL p){
    12     int i;
    13     dp[0]=1;
    14     for(i=1;i<=p;i++)
    15         dp[i]=(dp[i-1]*i)%p;
    16 }
    17 LL pow_mod(LL a,LL n,LL p)
    18 {
    19     LL ans=1;
    20     while(n)
    21     {
    22         if(n&1) ans=(ans*a)%p;
    23         n=n>>1;
    24         a=(a*a)%p;
    25     }
    26     return ans;
    27 }
    28 LL C(LL a,LL b,LL p)
    29 {
    30     if(a<b) return 0;
    31     if(b>a-b) b=a-b;
    32     LL sum1=dp[a];
    33     LL sum2=(dp[b]*dp[a-b])%p;
    34     sum1=(sum1*pow_mod(sum2,p-2,p));
    35     return sum1;
    36 }
    37 LL Lucas(LL n,LL m,LL p)
    38 {
    39     LL ans=1;
    40     while(n&&m&&ans)
    41     {
    42         ans=(ans*C(n%p,m%p,p))%p;
    43         n=n/p;
    44         m=m/p;
    45     }
    46     return ans;
    47 }
    48 int main()
    49 {
    50     int T;
    51     LL n,m,p;
    52     scanf("%d",&T);
    53     while(T--)
    54     {
    55         scanf("%I64d%I64d%I64d",&n,&m,&p);
    56         init(p);
    57         if(n>m)swap(n,m);
    58         LL ans= Lucas(n+m,m,p);
    59         printf("%I64d
    ",ans);
    60     }
    61     return 0;
    62 }
  • 相关阅读:
    java域名解析
    JDK8新特性面试
    java设计模式--单例模式
    EclipseEE导入项目出现的那些问题
    Eclipse配置Git发布项目到Github
    SVN本地服务器的搭建
    APK的反编译
    Oracle系列--级联删除和级联更新
    Oracle创建表空间和用户
    全方面了解和学习PHP框架 PHP培训教程
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3705763.html
Copyright © 2011-2022 走看看