zoukankan      html  css  js  c++  java
  • HDU How many integers can you find 容斥

    How many integers can you find

    Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 4249    Accepted Submission(s): 1211


    Problem Description
      Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
     
    Input
      There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
     
    Output
      For each case, output the number.
     
    Sample Input
    12 2 2 3
     
    Sample Output
    7
    题意:给n个数字,最大不会超过20的非负数,0忽略它可以。给你一个数字M,
    问1-M-1中,有多少个数字能被这n数字中任何一个整除(只要满足其中一个能整除就行)。统计个数输出。
     
    思路:容斥,简单容斥。一开始做zoj的一道题,果断数据太水,方法是不对的也能ac。
    原来的思路是这样的,对n个数字,筛选掉ai倍数的数字,然后就容斥,但是明显这样的数据有问题
    4 6,  这样容斥后得到的结果是4 6 -24,不对的,应该是4 6 -12,所以应该是 4 6    -(4*6)/gcd(4,6)

    略坑略坑。

     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 using namespace std;
     6 
     7 bool Hash[22];
     8 int f[22],len,qlen;
     9 __int64 Q[5002];
    10 
    11 int gcd(int a,int b)
    12 {
    13     if(a<0)a=-a;
    14     if(b<0)b=-b;
    15     if(b==0)return a;
    16     int r;
    17     while(b)
    18     {
    19         r=a%b;
    20         a=b;
    21         b=r;
    22     }
    23     return a;
    24 }
    25 void solve(__int64 m)
    26 {
    27     qlen = 0;
    28     Q[0]=-1;
    29     for(int i=1;i<=len;i++)
    30     {
    31         int k=qlen;
    32         for(int j=0;j<=k;j++)
    33         Q[++qlen]=-1*(Q[j]*f[i]/gcd(Q[j],f[i]));
    34     }
    35     __int64 sum = 0;
    36     for(int i=1;i<=qlen;i++)
    37     sum = sum+m/Q[i];
    38     printf("%I64d
    ",sum);
    39 }
    40 int main()
    41 {
    42     int m,x;
    43     __int64 n;
    44     while(scanf("%I64d%d",&n,&m)>0)
    45     {
    46         n=n-1;
    47         memset(Hash,false,sizeof(Hash));
    48         for(int i=1;i<=m;i++)
    49         {
    50             scanf("%d",&x);
    51             Hash[x]=true;
    52         }
    53         for(int i=1;i<=20;i++)
    54         {
    55             if(Hash[i]==true)
    56             for(int j=i+i;j<=20;j=j+i)
    57             if(Hash[j]==true) Hash[j]=false;
    58         }
    59         len = 0;
    60         for(int i=1;i<=20;i++)if(Hash[i]==true) f[++len]=i;
    61         solve(n);
    62     }
    63     return 0;
    64 }
  • 相关阅读:
    【深入理解 Java 虚拟机】2. 自动内存管理
    【深入理解 Java 虚拟机】1. 走进 Java
    【JVM】体系结构和底层原理
    【JVM】JVM 入门与基础总结
    ios 个推推送集成
    iOS UIWebView 和 WKWebView 的 cookie 获取,设置,删除
    CUICatalog: Invalid asset name supplied: '(null)'
    iOS 警告收集快速消除
    ios 你必须了解的系统定义宏使用
    ios 开发常用函数
  • 原文地址:https://www.cnblogs.com/tom987690183/p/4030329.html
Copyright © 2011-2022 走看看