zoukankan      html  css  js  c++  java
  • poj 2631 Roads in the North【树的直径裸题】

    Roads in the North
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 2359   Accepted: 1157

    Description

    Building and maintaining roads among communities in the far North is an expensive business. With this in mind, the roads are build such that there is only one route from a village to a village that does not pass through some other village twice. 
    Given is an area in the far North comprising a number of villages and roads among them such that any village can be reached by road from any other village. Your job is to find the road distance between the two most remote villages in the area. 

    The area has up to 10,000 villages connected by road segments. The villages are numbered from 1. 

    Input

    Input to the problem is a sequence of lines, each containing three positive integers: the number of a village, the number of a different village, and the length of the road segment connecting the villages in kilometers. All road segments are two-way.

    Output

    You are to output a single integer: the road distance between the two most remote villages in the area.

    Sample Input

    5 1 6
    1 4 5
    6 3 9
    2 6 8
    6 1 7
    

    Sample Output

    22

    告诉我不是我一个人看到输入数据时不知道是什么意思
    树的直径裸题
    #include<stdio.h>
    #include<string.h>
    #include<queue>
    #define MAX 40000
    using namespace std;
    int head[MAX];
    int vis[MAX],dis[MAX];
    int ans,sum,beg;
    struct node
    {
    	int u,v,w;
    	int next;
    }edge[MAX];
    void add(int u,int v,int w)
    {
    	edge[ans].u=u;
    	edge[ans].v=v;
    	edge[ans].w=w;
    	edge[ans].next=head[u];
    	head[u]=ans++;
    }
    void bfs(int sx)
    {
    	int i,j;
    	memset(vis,0,sizeof(vis));
    	memset(dis,0,sizeof(dis));
    	queue<int>q;
    	sum=0;
    	beg=sx;
    	q.push(sx);
    	while(!q.empty())
    	{
    	    int top=q.front();
                q.pop();
    		for(i=head[top];i!=-1;i=edge[i].next)
    		{
    			int x=edge[i].v;
    			if(!vis[x])
    			{
    				
    				vis[x]=1;
    				dis[x]=dis[top]+edge[i].w;
    				q.push(x);
    				if(sum<dis[x])
    				{
    					sum=dis[x];
    					beg=x;
    				}
    			}
    		}	 
    	}
    }
    int main()
    {
    	ans=0;
    	memset(head,-1,sizeof(head));
    	int a,b,c;
    	while(scanf("%d%d%d",&a,&b,&c)!=EOF)
    	{
    		add(a,b,c);
    		add(b,a,c);
    	}
    	bfs(1);
    	bfs(beg);
    	printf("%d
    ",sum);
    	return 0;
    }
    

      

  • 相关阅读:
    CF 936C Lock Puzzle——构造
    LOJ 2980 「THUSCH 2017」大魔法师——线段树
    LOJ 2979 「THUSCH 2017」换桌——多路增广费用流
    LOJ 2978 「THUSCH 2017」杜老师——bitset+线性基+结论
    LOJ 2997 「THUSCH 2017」巧克力——思路+随机化+斯坦纳树
    LOJ 2557 「CTSC2018」组合数问题 (46分)
    bzoj 3158 千钧一发 —— 最小割
    CF1092 D & E —— 思路+单调栈,树的直径
    bzoj 5120 无限之环 & 洛谷 P4003 —— 费用流(多路增广SPFA)
    bzoj 1070 修车 —— 费用流
  • 原文地址:https://www.cnblogs.com/tonghao/p/4738601.html
Copyright © 2011-2022 走看看