Number Sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 133924 Accepted Submission(s): 32531
Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 10
0 0 0
Sample Output
2
5
题解:1、一般这种数值特别大而又给了你一个数组,由数组的前边的项求得后边的项的题都有规律 ,注意找规律
2、f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 每个数mod7无非有7种结果 0 1 2 3 4 5 6,我们用同余定理转换f(n)式得f(n) = ((A * f(n - 1))mod7 +( B * f(n - 2))mod7) mod 7.因为我们上边说了mod7只有7种结果,那么根据上式两个对7取模的总共有7*7=49种可能,所以49为一个周期,这样我们只需要求出前49项就可以了
#include<stdio.h> #include<string.h> #define MAX 1000 int f[MAX]; void fun(int a,int b) { f[1]=f[2]=1; for(int i=3;i<55;i++) f[i]=(a*f[i-1]+b*f[i-2])%7; } int main() { int a,b,c,n,m,i,j; while(scanf("%d%d%d",&a,&b,&n)&&a!=0&&b!=0&&n!=0) { n=n%49; fun(a,b); printf("%d ",f[n]); } return 0; }