Task Schedule
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6000 Accepted Submission(s):
1922
Problem Description
Our geometry princess XMM has stoped her study in
computational geometry to concentrate on her newly opened factory. Her factory
has introduced M new machines in order to process the coming N tasks. For the
i-th task, the factory has to start processing it at or after day Si, process it
for Pi days, and finish the task before or at day Ei. A machine can only work on
one task at a time, and each task can be processed by at most one machine at a
time. However, a task can be interrupted and processed on different machines on
different days.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Input
On the first line comes an integer T(T<=20),
indicating the number of test cases.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
Output
For each test case, print “Case x: ” first, where x is
the case number. If there exists a feasible schedule to finish all the tasks,
print “Yes”, otherwise print “No”.
Print a blank line after each test case.
Print a blank line after each test case.
Sample Input
2
4 3
1 3 5
1 1 4
2 3 7
3 5 9
2 2
2 1 3
1 2 2
Sample Output
Case 1: Yes
Case 2: Yes
题意:有n个任务,m个机器,给你完成第i件任务的时间以及必须完成这件任务的时间区间(si,ei),一台机器一次只能执行一个任务,让你判断是否完成所有的任务;
题解:难在建图 注意: 我们是将天数看做流量
1、将每个任务i看做一个节点连接超级源点 s,容量为每个人物所需要的时间
2、将每个任务i看做节点, 连接完成这个任务所要进行的时间阶段内的所有点,容量为1 (表示这件任务的流量只能为1(即天数为1))
3、将所有时间段内的点连接到超级汇点t容量为m (表示一天内共有m台机器可以同时工作)
#include<stdio.h>
#include<string.h>
#include<queue>
#include<stack>
#include<algorithm>
#define INF 0x7fffff
#define MAX 11000
#define MAXM 1001000
using namespace std;
struct node
{
int from,to,cap,flow,next;
}edge[MAXM];
int ans,head[MAX];
int cur[MAX];
int vis[MAX];
int dis[MAX];
int sum,n,m;
int sec;//超级汇点
void init()
{
ans=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v,int w)
{
node E1={u,v,w,0,head[u]};
edge[ans]=E1;
head[u]=ans++;
node E2={v,u,0,0,head[v]};
edge[ans]=E2;
head[v]=ans++;
}
void getmap()
{
int i,j,last=-1;
sum=sec=0;
int bt,et,time;
for(i=1;i<=n;i++)
{
scanf("%d%d%d",&time,&bt,&et);
sum+=time;
add(0,i,time);//超级源点连接第i件任务
for(j=bt;j<=et;j++)
add(i,n+j,1);//将每件任务与完成这件任务所需要的时间段内的每一天连接
last=max(last,et);
}
sec=n+last+1;
for(i=1;i<=sec;i++)
add(n+i,sec,m);//将所有的时间段内的点指向超级汇点
}
int bfs(int beg,int end)
{
int i;
memset(vis,0,sizeof(vis));
memset(dis,-1,sizeof(dis));
queue<int>q;
while(!q.empty())
q.pop();
vis[beg]=1;
dis[beg]=0;
q.push(beg);
while(!q.empty())
{
int u=q.front();
q.pop();
for(i=head[u];i!=-1;i=edge[i].next)//遍历所有的与u相连的边
{
node E=edge[i];
if(!vis[E.to]&&E.cap>E.flow)//如果边未被访问且流量未满继续操作
{
dis[E.to]=dis[u]+1;//建立层次图
vis[E.to]=1;//将当前点标记
if(E.to==end)//如果当前点搜索到终点则停止搜索 返回1表示有从原点到达汇点的路径
return 1;
q.push(E.to);//将当前点入队
}
}
}
return 0;//返回0表示未找到从源点到汇点的路径
}
int dfs(int x,int a,int end)//把找到的这条边上的所有当前流量加上a(a是这条路径中的最小残余流量)
{
//int i;
if(x==end||a==0)//如果搜索到终点或者最小的残余流量为0
return a;
int flow=0,f;
for(int& i=cur[x];i!=-1;i=edge[i].next)//i从上次结束时的弧开始
{
node& E=edge[i];
if(dis[E.to]==dis[x]+1&&(f=dfs(E.to,min(a,E.cap-E.flow),end))>0)//如果
{//bfs中我们已经建立过层次图,现在如果 dis[E.to]==dis[x]+1表示是我们找到的路径
//如果dfs>0表明最小的残余流量还有,我们要一直找到最小残余流量为0
E.flow+=f;//正向边当前流量加上最小的残余流量
edge[i^1].flow-=f;//反向边
flow+=f;//总流量加上f
a-=f;//最小可增流量减去f
if(a==0)
break;
}
}
return flow;//所有边加上最小残余流量后的值
}
int Maxflow(int beg,int end)
{
int flow=0;
while(bfs(beg,end))//存在最短路径
{
memcpy(cur,head,sizeof(head));//复制数组
flow+=dfs(beg,INF,end);
}
return flow;//最大流量
}
int main()
{
int t;
scanf("%d",&t);
int k=1;
while(t--)
{
scanf("%d%d",&n,&m);
init();
getmap();
printf("Case %d: ",k++);
if(sum==Maxflow(0,sec))
printf("Yes
");
else
printf("No
");
}
return 0;
}