zoukankan      html  css  js  c++  java
  • hdoj 2817 A sequence of numbers【快速幂】

    A sequence of numbers

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 4384    Accepted Submission(s): 1374


    Problem Description
    Xinlv wrote some sequences on the paper a long time ago, they might be arithmetic or geometric sequences. The numbers are not very clear now, and only the first three numbers of each sequence are recognizable. Xinlv wants to know some numbers in these sequences, and he needs your help.
     
    Input
    The first line contains an integer N, indicting that there are N sequences. Each of the following N lines contain four integers. The first three indicating the first three numbers of the sequence, and the last one is K, indicating that we want to know the K-th numbers of the sequence.

    You can assume 0 < K <= 10^9, and the other three numbers are in the range [0, 2^63). All the numbers of the sequences are integers. And the sequences are non-decreasing.
     
    Output
    Output one line for each test case, that is, the K-th number module (%) 200907.
     
    Sample Input
    2
    1 2 3 5
    1 2 4 5
     
    Sample Output
    5
    16
     题意:给你一个序列的前三位,判断是等差数列还是等比数列,然后求出这个数列的第k项并输出第k项对200907取模
     
    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    #define LL long long 
    #define mod 200907
    using namespace std;
    LL fun(LL a,LL b)
    {
    	LL ans=1;
    	//a=a%mod;
    	while(b)
    	{
    		if(b&1)
    		    ans=(a*ans)%mod;
    		b/=2;
    		a=(a*a)%mod;
    	}
    	return ans;
    }
    int main()
    {
    	int t;
    	LL x,y,x1,y1;
    	LL a,b,c,k;
    	LL ans;
    	scanf("%d",&t);
    	while(t--)
    	{
    		scanf("%lld%lld%lld%lld",&a,&b,&c,&k);
    	    if(2*b==a+c)//等差数列 
    	    	printf("%lld
    ",(a+(c-b)*(k-1))%mod);
    	    else //等比数列 
    	        printf("%lld
    ",(((fun((c/b),k-1))%mod)*(a%mod))%mod);
    	} 
    	return 0;
    }
    

      

  • 相关阅读:
    【转】RocketMQ事务消费和顺序消费详解
    RocketMQ初探(五)之RocketMQ4.2.6集群部署(单Master+双Master+2m+2s+async异步复制)
    Spring定时器Quartz的使用
    RocketMQ初探(四)之RocketMQ4.x版本可视化管理控制台rocketmq-console-ng搭建(Apache)
    RocketMQ入门(简介、特点)
    RocketMQ初探(二)之RocketMQ3.26版本搭建(含简单Demo测试案例)
    RocketMQ初探(一)
    tomcat详解
    HDFS读写流程
    RabbitMQ
  • 原文地址:https://www.cnblogs.com/tonghao/p/4963383.html
Copyright © 2011-2022 走看看