zoukankan      html  css  js  c++  java
  • 机器学习——决策树

    1.决策树的构造

    优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据

    缺点:可能会产生过度匹配问题

    适用数据类型:数值型和标称型

    # coding:utf-8
    # !/usr/bin/env python
    
    '''
    Created on Oct 12, 2010
    Decision Tree Source Code for Machine Learning in Action Ch. 3
    @author: Peter Harrington
    '''
    from math import log
    import operator
    
    #通过是否浮出水面和是否有脚蹼,来划分鱼类和非鱼类
    def createDataSet():
        dataSet = [[1, 1, 'yes'],
                   [1, 1, 'yes'],
                   [1, 0, 'no'],
                   [0, 1, 'no'],
                   [0, 1, 'no']]
        labels = ['no surfacing','flippers']
        #change to discrete values
        return dataSet, labels
    
    def calcShannonEnt(dataSet):	#计算给定数据集的香农熵
        numEntries = len(dataSet)	#数据集中的实例总数
        labelCounts = {}
        #为所有可能的分类创建字典,键是可能的特征属性,值是含有这个特征属性的总数
        for featVec in dataSet:
            currentLabel = featVec[-1]
            if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
            labelCounts[currentLabel] += 1
        #计算香农熵
        shannonEnt = 0.0
        #为所有的分类计算香农熵
        for key in labelCounts:
            prob = float(labelCounts[key])/numEntries
            shannonEnt -= prob * log(prob,2) 	#以2为底求对数
        #香农熵Ent的值越小,纯度越高,即通过这个特征属性来分类,属于同一类别的结点会比较多
        return shannonEnt
        
    def splitDataSet(dataSet, axis, value):
        retDataSet = []
        for featVec in dataSet:
            if featVec[axis] == value:
                reducedFeatVec = featVec[:axis]     #chop out axis used for splitting
                reducedFeatVec.extend(featVec[axis+1:])
                retDataSet.append(reducedFeatVec)
        return retDataSet
        
    def chooseBestFeatureToSplit(dataSet):
        numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
        baseEntropy = calcShannonEnt(dataSet)
        bestInfoGain = 0.0; bestFeature = -1
        for i in range(numFeatures):        #iterate over all the features
            featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
            uniqueVals = set(featList)       #get a set of unique values
            newEntropy = 0.0
            for value in uniqueVals:
                subDataSet = splitDataSet(dataSet, i, value)
                prob = len(subDataSet)/float(len(dataSet))
                newEntropy += prob * calcShannonEnt(subDataSet)     
            infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
            if (infoGain > bestInfoGain):       #compare this to the best gain so far
                bestInfoGain = infoGain         #if better than current best, set to best
                bestFeature = i
        return bestFeature                      #returns an integer
    
    def majorityCnt(classList):
        classCount={}
        for vote in classList:
            if vote not in classCount.keys(): classCount[vote] = 0
            classCount[vote] += 1
        sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
        return sortedClassCount[0][0]
    
    def createTree(dataSet,labels):
        classList = [example[-1] for example in dataSet]
        if classList.count(classList[0]) == len(classList): 
            return classList[0]#stop splitting when all of the classes are equal
        if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
            return majorityCnt(classList)
        bestFeat = chooseBestFeatureToSplit(dataSet)
        bestFeatLabel = labels[bestFeat]
        myTree = {bestFeatLabel:{}}
        del(labels[bestFeat])
        featValues = [example[bestFeat] for example in dataSet]
        uniqueVals = set(featValues)
        for value in uniqueVals:
            subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labels
            myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
        return myTree                            
        
    def classify(inputTree,featLabels,testVec):
        firstStr = inputTree.keys()[0]
        secondDict = inputTree[firstStr]
        featIndex = featLabels.index(firstStr)
        key = testVec[featIndex]
        valueOfFeat = secondDict[key]
        if isinstance(valueOfFeat, dict): 
            classLabel = classify(valueOfFeat, featLabels, testVec)
        else: classLabel = valueOfFeat
        return classLabel
    
    def storeTree(inputTree,filename):
        import pickle
        fw = open(filename,'w')
        pickle.dump(inputTree,fw)
        fw.close()
        
    def grabTree(filename):
        import pickle
        fr = open(filename)
        return pickle.load(fr)
        
        
    if __name__ == '__main__':
        myDat,labels = createDataSet()
        print myDat
        print calcShannonEnt(myDat)
    	
    

    #通过是否浮出水面和是否有脚蹼,来划分鱼类和非鱼类
    def createDataSet():
        dataSet = [[1, 1, 'yes'],
                   [1, 1, 'yes'],
                   [1, 0, 'no'],
                   [0, 1, 'no'],
                   [0, 1, 'no']]
        labels = ['no surfacing','flippers']
        #change to discrete values
        return dataSet, labels
    
    def calcShannonEnt(dataSet):	#计算给定数据集的香农熵
        numEntries = len(dataSet)	#数据集中的实例总数
        labelCounts = {}
        #为所有可能的分类创建字典,键是可能的特征属性,值是含有这个特征属性的总数
        for featVec in dataSet:
            currentLabel = featVec[-1]
            if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
            labelCounts[currentLabel] += 1
        #计算香农熵
        shannonEnt = 0.0
        #为所有的分类计算香农熵
        for key in labelCounts:
            prob = float(labelCounts[key])/numEntries
            shannonEnt -= prob * log(prob,2) 	#以2为底求对数
        #香农熵Ent的值越小,纯度越高,即通过这个特征属性来分类,属于同一类别的结点会比较多
        return shannonEnt
    
    myDat,labels = createDataSet()
    print myDat
    print calcShannonEnt(myDat)
    

     

    2.划分数据集

    def splitDataSet(dataSet, axis, value):		#按照给定特征划分数据集,axis表示根据第几个特征,value表示特征的值
        retDataSet = []				#创建新的list对象
        for featVec in dataSet:
            if featVec[axis] == value:
                reducedFeatVec = featVec[:axis]     #切片
                reducedFeatVec.extend(featVec[axis+1:])	#把序列添加到列表reducedFeatVec中
                #print reducedFeatVec
                retDataSet.append(reducedFeatVec)		#把对象reducedFeatVec(是一个list)添加到列表retDataSet中
        return retDataSet
    
    def chooseBestFeatureToSplit(dataSet):		#选择最好的数据集划分方式
        numFeatures = len(dataSet[0]) - 1      	#特征的数量,最后一列是标签,所以减去1
        baseEntropy = calcShannonEnt(dataSet)
        bestInfoGain = 0.0; bestFeature = -1	#信息增益和最好的特征下标
        for i in range(numFeatures):        	#递归所有特征
            featList = [example[i] for example in dataSet]	#创建一个列表,包含第i个特征的所有值
            uniqueVals = set(featList)       	#创建一个集合set,由不同的元素组成
            newEntropy = 0.0
            for value in uniqueVals:
                subDataSet = splitDataSet(dataSet, i, value)	#按照所有特征的可能划分数据集
                prob = len(subDataSet)/float(len(dataSet))		#计算所有特征的可能性
                newEntropy += prob * calcShannonEnt(subDataSet)     
            infoGain = baseEntropy - newEntropy     #计算信息增益
            if (infoGain > bestInfoGain):       	#比较不同特征之间信息增益的大小
                bestInfoGain = infoGain         	#选取信息增益大的特征
                bestFeature = i
        return bestFeature                      	#返回特征的下标
    

    3.递归构建决策树

     

    def createTree(dataSet,labels):		#创建决策树的函数,采用字典的表示形式
        classList = [example[-1] for example in dataSet]
        if classList.count(classList[0]) == len(classList): 	#如果类别完全相同则停止继续划分
            return classList[0]
        if len(dataSet[0]) == 1: 					#遍历完所有特征时返回出现次数最多的
            return majorityCnt(classList)
        bestFeat = chooseBestFeatureToSplit(dataSet)		#选择信息增益最大的特征下标
        bestFeatLabel = labels[bestFeat]				#选择信息增益最大的特征
        myTree = {bestFeatLabel:{}}
        del(labels[bestFeat])					#从标签中删除已经划分好的特征
        featValues = [example[bestFeat] for example in dataSet]	#取得该特征的所有可能取值
        uniqueVals = set(featValues)				#建立一个集合
        for value in uniqueVals:
            subLabels = labels[:]       
            myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)	#递归createTree
        return myTree  
    
    myDat,labels = createDataSet()
    myTree = createTree(myDat,labels)
    print myTree
    
    {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
    

     

    4.在Python中使用Matplotlib注解绘制树形图

    myDat,labels = createDataSet()
    print myDat
    import treePlotter
    treePlotter.createPlot(myTree)  #绘制树形图
    

     

    5.构造注解树

     获取叶节点的数目和树的层数

    import matplotlib.pyplot as plt
    
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")
    leafNode = dict(boxstyle="round4", fc="0.8")
    arrow_args = dict(arrowstyle="<-")
    
    def getNumLeafs(myTree):		#获取叶子节点的数目
        numLeafs = 0
        firstStr = myTree.keys()[0]
        secondDict = myTree[firstStr]
        for key in secondDict.keys():
            if type(secondDict[key]).__name__=='dict':	#测试节点的数据类型是否为字典
                numLeafs += getNumLeafs(secondDict[key])	#递归
            else:   numLeafs +=1				#如果不是字典,则说明是叶子节点
        return numLeafs
    
    def getTreeDepth(myTree):		#获取树的层数
        maxDepth = 0
        firstStr = myTree.keys()[0]
        secondDict = myTree[firstStr]
        for key in secondDict.keys():
            if type(secondDict[key]).__name__=='dict':	#测试节点的数据类型是否为字典,如果不是字典,则说明是叶子节点
                thisDepth = 1 + getTreeDepth(secondDict[key])	#递归
            else:   thisDepth = 1				
            if thisDepth > maxDepth: maxDepth = thisDepth
        return maxDepth
    

     绘制树形图

    def plotNode(nodeTxt, centerPt, parentPt, nodeType):	#绘制带箭头的注解
        #annotate参数:nodeTxt:标注文本,xy:所要标注的位置坐标,xytext:标注文本所在位置,arrowprops:标注箭头属性信息
        createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
                 xytext=centerPt, textcoords='axes fraction',
                 va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )
        
    def plotMidText(cntrPt, parentPt, txtString):		#在父子节点间填充文本信息
        xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
        yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
        createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
    
    def plotTree(myTree, parentPt, nodeTxt):		#if the first key tells you what feat was split on
        numLeafs = getNumLeafs(myTree)  			#计算宽与高
        depth = getTreeDepth(myTree)
        firstStr = myTree.keys()[0]     			#the text label for this node should be this
        print plotTree.xOff
        cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
        print parentPt
        print cntrPt
        plotMidText(cntrPt, parentPt, nodeTxt)		#标记子节点属性值
        plotNode(firstStr, cntrPt, parentPt, decisionNode)
        secondDict = myTree[firstStr]
        plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD	#减少y偏移
        for key in secondDict.keys():
            if type(secondDict[key]).__name__=='dict':	#test to see if the nodes are dictonaires, if not they are leaf nodes   
                plotTree(secondDict[key],cntrPt,str(key))        #recursion
            else:   #it's a leaf node print the leaf node
                plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
                plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
                plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
        plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
    #if you do get a dictonary you know it's a tree, and the first element will be another dict
    
    def createPlot(inTree):			#绘制树形图,调用了plotTree()
        fig = plt.figure(1, facecolor='white')
        fig.clf()
        axprops = dict(xticks=[], yticks=[])
        createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
        #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
        plotTree.totalW = float(getNumLeafs(inTree))	#存储树的宽度
        plotTree.totalD = float(getTreeDepth(inTree))	#存储树的深度
        plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
        plotTree(inTree, (0.5,1.0), '')
        plt.show()
    

    测试和存储分类器

    1.测试算法:使用决策树执行分类

    def classify(inputTree,featLabels,testVec):	#使用决策树的分类函数
        firstStr = inputTree.keys()[0]
        secondDict = inputTree[firstStr]
        featIndex = featLabels.index(firstStr)	#将标签字符串转换为索引
        key = testVec[featIndex]
        valueOfFeat = secondDict[key]
        if isinstance(valueOfFeat, dict): 
            classLabel = classify(valueOfFeat, featLabels, testVec)
        else: classLabel = valueOfFeat
        return classLabel
    
        myDat,labels = createDataSet()
        Labels = labels
        print "myDat="
        print myDat
        print "labels="
        print labels
    
        import treePlotter
        myTree = treePlotter.retrieveTree(0)	#绘制树形图
        print myTree
        print classify(myTree,Labels,[0,1])
    

     2.使用算法:决策树的存储

    def storeTree(inputTree,filename):	#使用pickle模块存储决策树
        import pickle
        fw = open(filename,'w')
        pickle.dump(inputTree,fw)
        fw.close()
        
    def grabTree(filename):			#查看决策树
        import pickle
        fr = open(filename)
        return pickle.load(fr)
    
        myDat,labels = createDataSet()
        Labels = labels
        print "myDat="
        print myDat
        print "labels="
        print labels
        import treePlotter
        myTree = treePlotter.retrieveTree(0)	#绘制树形图
        print myTree
        storeTree(myTree,'classifierStorage.txt')
        print grabTree('classifierStorage.txt')
    

    示例:使用决策树预测隐形眼镜类型

        import treePlotter
        import simplejson
        import ch
        ch.set_ch()
        from matplotlib import pyplot as plt
        fr = open('lenses.txt')
        lenses = [inst.strip().split('	') for inst in fr.readlines()]	#读取一行数据,以tab键分割并去掉空格
        lensesLabels = [u'年龄',u'近远视',u'散光',u'眼泪等级']			#使用unicode,不然编码会报错
        lensesTree = createTree(lenses,lensesLabels)
        print simplejson.dumps(lensesTree, encoding="UTF-8", ensure_ascii=False)	#使用simplejson模块输出对象中的中文
        treePlotter.createPlot(lensesTree)
    

     

  • 相关阅读:
    win32_弹弹球游戏
    蓝桥杯评测_前n项和
    算法_fibonacci_递归求值
    PTA 分类
    _tmain() 和 main()
    VS2010 C++ 插件 VissualAssistX 安装
    vs2010 > LINK : fatal error LNK1123: 转换到 COFF 期间失败: 文件无效或损坏
    int、long、long long 的取值范围
    B树 B-树 B+树 B*树
    PTA 5-10 公路村村通 (30)
  • 原文地址:https://www.cnblogs.com/tonglin0325/p/6050055.html
Copyright © 2011-2022 走看看