zoukankan      html  css  js  c++  java
  • SPOJ #440. The Turtle´s Shortest Path

    Coding a Dijkstra is not hard. %70 of my time spent on tackling TLE, as my last post.

    Dijkstra works in BFS manner, but at each step, it picks the shortest child greedily and then relax all other neighbors. 

    Data Structure: since there could be up to 10000 cities, storing distance for all pairs of cities are not allowed - 300+M space exceeds SPOJ's 256M limit. So I simply used std::map (my another version used GNU's hash_map but not tried its performance) as the adjacent linked list to store graph; and map<string, int> to store city name - index mapping. Again, hash_map could be better.

    Anyway, here's my AC code, 11.34s:

    //    440
    
    #include <vector>
    #include <cstdio>
    #include <iostream>
    #include <queue>
    #include <map>
    using namespace std;
    
    /*
    //////////////////////////////////
    //    Components for GNU's hash_map
    #include <backward/hash_map>
    using namespace __gnu_cxx;
    namespace __gnu_cxx
    {
      template<>
      struct hash<std::string>
      {
        hash<char*> h;
        size_t operator()(const std::string &s) const
        {
          return h(s.c_str());
        };
      };
    }
    */
    //////////////////////////////////
    
    const int MaxCity = 10000;
    const int MaxDist = 0xFFFFFFF;
    map<string, int> hmap;
    typedef map<int, map<int, int> > DHash;
    DHash distMap;
    
    bool visited[MaxCity] = {false};
    int dist[MaxCity] = {MaxDist};
    
    /////////////////////////////////////
    void add_dist(int srcInx, int toInx, int cost)
    {
        distMap[srcInx][toInx] = cost;
    }
    int get_dist(int srcInx, int toInx)
    {
        DHash::iterator iter = distMap.find(srcInx);
        if(iter != distMap.end())
        {
            map<int, int>::iterator iter2 = iter->second.find(toInx);
            if(iter2 != iter->second.end())
            {
                return iter2->second;
            }
        }
        return MaxDist;
    }
    /////////////////////////////////////
    struct nComp
    {
     int operator() (const pair<int,int>& p1, const pair<int,int> &p2)
     {
         return p1.second > p2.second;
     }
    };
    ///////////////////////////////////////
    void clearGraph()
    {
        hmap.clear();
        distMap.clear();
    }
    
    void clearRuntime(int citycnt)
    {
        for(int i = 0; i < citycnt; i ++)
        {
            visited[i] = false;
            dist[i] = MaxDist;
        }
    }
    ///////////////////////////////////////////
    int find_shortest_path(int cinx1, int cinx2)
    {
        int vcnt = hmap.size();
    
        priority_queue<pair<int, int>, vector<pair<int, int> >, nComp> q;
        //    Init
        for(int i = 0; i < vcnt; i ++)
        {
            dist[i] = MaxDist;
            visited[i] = false;
        }
        dist[cinx1 - 1] = 0;
        q.push(make_pair(cinx1-1, 0));
    
        //    Go
        while(!q.empty())
        {
            pair<int,int> n = q.top(); q.pop();
    
            //    Greedy, find the unvisited min-cost node
            int minInx = n.first;
            int minCost = n.second;
            if(minCost == MaxDist)    break;
            visited[minInx] = true;
            if(minInx == cinx2 - 1) return dist[cinx2 - 1];
    
            //    Relax neighbors
            DHash::iterator iter = distMap.find(minInx);
            map<int,int> &child = iter->second;
            for(map<int,int>::iterator iMap = child.begin(); iMap != child.end(); iMap ++)
            {
                int i = iMap->first;
                int gDist = iMap->second;
                int alt = dist[minInx] + gDist;
                if(alt < dist[i])
                {
                    dist[i] = alt;
                    //cout << "		relaxed to " << alt << " " << minInx << " to" << i <<endl;
                    q.push(make_pair(i, dist[i]));
                }
            }
        }
    
        return MaxDist;
    }
    /////////////////////////
    #define gc getchar
    int read_int()
    {
      char c = gc();
      while(c<'0' || c>'9') c = gc();
      int ret = 0;
      while(c>='0' && c<='9') {
        ret = 10 * ret + c - 48;
        c = gc();
      }
      return ret;
    }
    /////////////////////////
    int main()
    {
        int runcnt = read_int();
        //cout << "Run " << runcnt << endl;
        while(runcnt --)
        {
            clearGraph();
            int ccnt = read_int();
            for(int ic = 1; ic <= ccnt; ic ++)
            {
                // cityName -> cityInx
                string city_name; cin >> city_name;
                int nnbr = read_int();
                hmap.insert(map<string, int>::value_type(city_name, ic));
                //cout << city_name << "->" << ic << endl;
    
                //    Fill out adjacency matrix
                while(nnbr--)
                {
                    int cinx = read_int();
                    int cost = read_int();
                    add_dist(ic-1, cinx-1, cost);
                    //cout << ic << " <-> " << cinx << " = " << cost << endl;
                }
            }
    
            int qcnt  = read_int();
            while(qcnt --)
            {
                string c1, c2;
                cin >> c1 >> c2;
                int cinx1 = hmap[c1];
                int cinx2 = hmap[c2];
            //    cout << c1 << "-" << c2 << " = " << cinx1 << " - " << cinx2 << endl;
                clearRuntime(ccnt);
                cout << find_shortest_path(cinx1, cinx2) << endl;
            }
            getchar();
            getchar(); // should return 0xA (enter)
        }
    
        return 0;
    }
    View Code
  • 相关阅读:
    八数码(BFS)
    食物链(并查集)
    最大异或对(Trie)
    解决espeak编译的一些问题
    AcWing 3779. 相等的和
    AcWing 3775. 数组补全(环图)
    AcWing 3728. 城市通电(最小生成树)
    AcWing 3727. 乘方相乘(进位制)
    tarjan
    LC刷题简要记录
  • 原文地址:https://www.cnblogs.com/tonix/p/3548072.html
Copyright © 2011-2022 走看看