Good one to learn Binary Indexed Tree (Fenwick Tree). Simply grabbed the editorial's code but with comments.
#include <cmath> #include <cstdio> #include <vector> #include <set> #include <map> #include <bitset> #include <iostream> #include <algorithm> #include <cstring> #include <unordered_map> #include <unordered_set> using namespace std; #define MAX_NUM 100001 ///////////////////////// class FenwickTree { long long tree[MAX_NUM]; public: // Utility methods: in terms of the original array BIT operates on // FenwickTree() { for(int i = 0; i < MAX_NUM; i ++) tree[i] = 0; } long long get(int inx) { return query(inx) - query(inx - 1); } void set(int inx, long long val) { long long curr = get(inx); update(inx, val - curr); } // BIT core methods // void update(int inx, long long val) { // BIT: from child going up to tree root // so ?????????? last valid bit in each iteration // while(inx <= MAX_NUM) { tree[inx] += val; inx += (inx & -inx); // backwards as query } } long long query(int inx) { long long sum = 0; // BIT: from parent going down to children // so eliminating last valid bit in each iteration // like addition in binary representation while(inx > 0) // lower valid bits to higher valid ones. cannot be zero { sum += tree[inx]; inx -= (inx & -inx); } return sum; } }; FenwickTree t1, t2, t3; ///////////////////////// int main() { set<int> s; map<int, int> m; // Get input int n; cin >> n; vector<int> in(n); for(int i = 0; i < n; i ++) { cin >> in[i]; s.insert(in[i]); } // int cnt = 1; for (auto &v : s) // sorted m[v] = cnt ++; for(auto &v : in) { int i = m[v]; t1.set(i, 1); // Existence: there's one number at i-th position in a sorted sequence // and then t1 updates all accumulated records (+1 all the way up) t2.set(i, t1.query(i - 1)); // set number of sum(existed smaller numbers): no. of tuples t3.set(i, t2.query(i - 1)); // similar as above } cout << t3.query(MAX_NUM) << endl; return 0; }