Actually I think it should belong to category of 'Bits Manipulation'.. but still, a really good one.
My first reaction was, how to derive from a ^ (b << i) from a ^ (b << (i - 1)), but after some thoughts, I figured out that that should not be the way to go: there's no easy way to do that induction.
This one resembles with another Bit one: we are to calculate sum, so we consider bit by bit: at bit[i], it contributes bit[i] << i to the final sum..
Lesson learnt: 1) power2 can be moduled too; 2) VISUALIZE the problem spaceprocess in your mind - it is crucial.
#include <cmath> #include <cstdio> #include <vector> #include <string> #include <iostream> #include <algorithm> using namespace std; #define MOD 1000000007 unsigned sum(vector<unsigned> &ones, int l, int r) { l = std::max(0, l); r = std::min(int(ones.size() - 1), r); if (l > r) return 0; return ones[r] - (l == 0 ? 0 : ones[l - 1]); } int main() { const unsigned N = 314159; const unsigned NMAX = 1e6; string a, b; std::cin >> a >> b; std::reverse(a.begin(), a.end()); std::reverse(b.begin(), b.end()); // Power2 % MOD vector<unsigned> pw2(NMAX); pw2[0] = 1; for (unsigned i = 1; i < NMAX; i++) pw2[i] = (pw2[i - 1] * 2LL) % MOD; // Count accumulative count of ones size_t lena = a.length(); size_t lenb = b.length(); vector<unsigned> ones(lenb, 0); for (int i = 0; i < lenb; i++) { ones[i] = b[i] - '0'; if (i > 0) ones[i] += ones[i - 1]; } // Count accumulative count of zeros unsigned ans = 0; for (int i = 0; i < NMAX; i++) { int bita = (i >= lena) ? 0 : a[i] - '0'; int cnt_ones = sum(ones, i - N, i); if (bita) { ans = (unsigned)((ans + (N + 1 - cnt_ones) * 1LL * pw2[i]) % MOD); } else { ans = (unsigned)((ans + cnt_ones * 1LL * pw2[i]) % MOD); } } cout << ans << endl; return 0; }