O(nlgn) - my first thought is, keep maintaining a balanced binary search tree, and then use "Binary Search Tree Closest" one to solve it. But unfortunately there's no on-hand stl class for it. The closest one is multiset<T>.
However, we don't have to use binary search tree. Since we are looking for closest partial sum - we can sort it, then check neighbor 2.
class Solution { public: /** * @param nums: A list of integers * @return: A list of integers includes the index of the first number * and the index of the last number */ vector<int> subarraySumClosest(vector<int> nums) { if (nums.empty()) { return {}; } const int n = nums.size(); vector<pair<int, int>> psum(n + 1); // Get and Sort the partial sum. a little greedy for (int i = 0; i < n; ++i) { psum[i + 1].first = psum[i].first + nums[i]; psum[i + 1].second = i + 1; } sort(psum.begin(), psum.end()); int d = INT_MAX; int ri = 1; for (int i = 1; i < n + 1; ++i) { int curr = abs(psum[i].first - psum[i - 1].first); if (d > curr) { d = curr; ri = i; } } int l = min(psum[ri - 1].second, psum[ri].second); int r = -1 + max(psum[ri - 1].second, psum[ri].second); return {l, r}; } };