Kafka Producer APIs
旧版的Procuder API有两种:kafka.producer.SyncProducer和kafka.producer.async.AsyncProducer.它们都实现了同一个接口:
- class Producer {
- /* 将消息发送到指定分区 */
- public void send(kafka.javaapi.producer.ProducerData<K,V> producerData);
- /* 批量发送一批消息 */
- public void send(java.util.List<kafka.javaapi.producer.ProducerData<K,V>> producerData);
- /* 关闭producer */
- public void close();
- }
新版的Producer API提供了以下功能:
- 可以将多个消息缓存到本地队列里,然后异步的批量发送到broker,可以通过参数
producer.type=async做到。
缓存的大小可以通过一些参数指定:queue.time
和batch.size
。一个后台线程((kafka.producer.async.ProducerSendThread
)从队列中取出数据并让kafka.producer.EventHandler
将消息发送到broker,也可以通过参数event.handler定制
handler,在producer端处理数据的不同的阶段注册处理器,比如可以对这一过程进行日志追踪,或进行一些监控。只需实现kafka.producer.async.CallbackHandler
接口,并在callback.handler
中配置。 - 自己编写Encoder来序列化消息,只需实现下面这个接口。默认的Encoder是
kafka.serializer.DefaultEncoder
。- interface Encoder<T> {
- public Message toMessage(T data);
- }
- 提供了基于Zookeeper的broker自动感知能力,可以通过参数
zk.connect
实现。如果不使用Zookeeper,也可以使用broker.list
参数指定一个静态的brokers列表,这样消息将被随机的发送到一个broker上,一旦选中的broker失败了,消息发送也就失败了。 - 通过分区函数
kafka.producer.Partitioner类对消息分区
。- interface Partitioner<T> {
- int partition(T key, int numPartitions);
- }
hash(key)%numPartitions
.如果key是null,就随机的选择一个。可以通过参数partitioner.class
定制分区函数。
新的api完整实例如下:
- import java.util.*;
- import kafka.javaapi.producer.Producer;
- import kafka.producer.KeyedMessage;
- import kafka.producer.ProducerConfig;
- public class TestProducer {
- public static void main(String[] args) {
- long events = Long.parseLong(args[0]);
- Random rnd = new Random();
- Properties props = new Properties();
- props.put("metadata.broker.list", "broker1:9092,broker2:9092 ");
- props.put("serializer.class", "kafka.serializer.StringEncoder");
- props.put("partitioner.class", "example.producer.SimplePartitioner");
- props.put("request.required.acks", "1");
- ProducerConfig config = new ProducerConfig(props);
- Producer<String, String> producer = new Producer<String, String>(config);
- for (long nEvents = 0; nEvents < events; nEvents++) {
- long runtime = new Date().getTime();
- String ip = “192.168.2.” + rnd.nextInt(255);
- String msg = runtime + “,www.example.com,” + ip;
- KeyedMessage<String, String> data = new KeyedMessage<String, String>("page_visits", ip, msg);
- producer.send(data);
- }
- producer.close();
- }
- }
下面这个是用到的分区函数:
- import kafka.producer.Partitioner;
- import kafka.utils.VerifiableProperties;
- public class SimplePartitioner implements Partitioner<String> {
- public SimplePartitioner (VerifiableProperties props) {
- }
- public int partition(String key, int a_numPartitions) {
- int partition = 0;
- int offset = key.lastIndexOf('.');
- if (offset > 0) {
- partition = Integer.parseInt( key.substring(offset+1)) % a_numPartitions;
- }
- return partition;
- }
- }
KafKa Consumer APIs
Consumer API有两个级别。低级别的和一个指定的broker保持连接,并在接收完消息后关闭连接,这个级别是无状态的,每次读取消息都带着offset。
高级别的API隐藏了和brokers连接的细节,在不必关心服务端架构的情况下和服务端通信。还可以自己维护消费状态,并可以通过一些条件指定订阅特定的topic,比如白名单黑名单或者正则表达式。
低级别的API
- class SimpleConsumer {
- /*向一个broker发送读取请求并得到消息集 */
- public ByteBufferMessageSet fetch(FetchRequest request);
- /*向一个broker发送读取请求并得到一个相应集 */
- public MultiFetchResponse multifetch(List<FetchRequest> fetches);
- /**
- * 得到指定时间之前的offsets
- * 返回值是offsets列表,以倒序排序
- * @param time: 时间,毫秒,
- * 如果指定为OffsetRequest$.MODULE$.LATIEST_TIME(), 得到最新的offset.
- * 如果指定为OffsetRequest$.MODULE$.EARLIEST_TIME(),得到最老的offset.
- */
- public long[] getOffsetsBefore(String topic, int partition, long time, int maxNumOffsets);
- }
低级别的API是高级别API实现的基础,也是为了一些对维持消费状态有特殊需求的场景,比如Hadoop consumer这样的离线consumer。
高级别的API
- /* 创建连接 */
- ConsumerConnector connector = Consumer.create(consumerConfig);
- interface ConsumerConnector {
- /**
- * 这个方法可以得到一个流的列表,每个流都是MessageAndMetadata的迭代,通过MessageAndMetadata可以拿到消息和其他的元数据(目前之后topic)
- * Input: a map of <topic, #streams>
- * Output: a map of <topic, list of message streams>
- */
- public Map<String,List<KafkaStream>> createMessageStreams(Map<String,Int> topicCountMap);
- /**
- * 你也可以得到一个流的列表,它包含了符合TopicFiler的消息的迭代,
- * 一个TopicFilter是一个封装了白名单或黑名单的正则表达式。
- */
- public List<KafkaStream> createMessageStreamsByFilter(
- TopicFilter topicFilter, int numStreams);
- /* 提交目前消费到的offset */
- public commitOffsets()
- /* 关闭连接 */
- public shutdown()
- }
这个API围绕着由KafkaStream实现的迭代器展开,每个流代表一系列从一个或多个分区多和broker上汇聚来的消息,每个流由一个线程处理,所以客户端可以在创建的时候通过参数指定想要几个流。一个流是多个分区多个broker的合并,但是每个分区的消息只会流向一个流。
每调用一次createMessageStreams都会将consumer注册到topic上,这样consumer和brokers之间的负载均衡就会进行调整。API鼓励每次调用创建更多的topic流以减少这种调整。createMessageStreamsByFilter方法注册监听可以感知新的符合filter的tipic。