zoukankan      html  css  js  c++  java
  • CS231n-lecture2-Image Classification pipeline 课堂笔记

    ---恢复内容开始---

    相关资源

     Event Type  Date  Description  Course Materials
    Lecture 2 Thursday 
    April 6
    Image Classification 
    The data-driven approach 
    K-nearest neighbor 
    Linear classification I
    [slides] 
    [python/numpy tutorial]
    [image classification notes]
    [linear classification notes]

    作业

    It is due January 20 (i.e. in two weeks). Handed in through CourseWork
    It includes:
    - Write/train/evaluate a kNN classifier
    - Write/train/evaluate a Linear Classifier (SVM and Softmax)
    - Write/train/evaluate a 2-layer Neural Network (backpropagation!)
    - Requires writing numpy/Python code

     Python Numpy

    PPT

    图像识别

    语义鸿沟问题semantic gap

    Images are represented as 3D arrays of numbers, with integers between [0, 255].

    挑战:(1)Viewpoint Variation  相机需要调整,使其具有鲁棒性。

    (2)光线

    (3)Deformation变形,姿势

    (3)Occlusion遮蔽问题,只能看清所判别种类的一部分,e.g. 10%

    (4)background clutter 背景杂斑

    (5)Intraclassvariation 同类演变

    Data-driven approach:

    1. Collect a dataset of images and labels
    2. Use Machine Learning to train an image classifier
    3. Evaluate the classifier on a withheld set of test images

    ---恢复内容结束---

    相关资源

     Event Type  Date  Description  Course Materials
    Lecture 2 Thursday 
    April 6
    Image Classification 
    The data-driven approach 
    K-nearest neighbor 
    Linear classification I
    [slides] 
    [python/numpy tutorial]
    [image classification notes]
    [linear classification notes]

    作业

    It is due January 20 (i.e. in two weeks). Handed in through CourseWork
    It includes:
    - Write/train/evaluate a kNN classifier
    - Write/train/evaluate a Linear Classifier (SVM and Softmax)
    - Write/train/evaluate a 2-layer Neural Network (backpropagation!)
    - Requires writing numpy/Python code

     Python Numpy

    PPT

    图像识别

    语义鸿沟问题semantic gap

    Images are represented as 3D arrays of numbers, with integers between [0, 255].

    挑战:(1)Viewpoint Variation  相机需要调整,使其具有鲁棒性。

    (2)光线

    (3)Deformation变形,姿势

    (3)Occlusion遮蔽问题,只能看清所判别种类的一部分,e.g. 10%

    (4)background clutter 背景杂斑

    (5)Intraclassvariation 同类演变

    Data-driven approach:

    1. Collect a dataset of images and labels
    2. Use Machine Learning to train an image classifier
    3. Evaluate the classifier on a withheld set of test images

  • 相关阅读:
    应用部署架构演进【转载】
    TiDB 学习笔记一(运维管理)
    c++ strcmp函数
    C++ sort()函数
    C++ 遍历set的三种方式
    nvcc fatal : '--ptxas-options=-v': expected a number
    PAT A1039 Vector的使用
    C++ set
    C++ int与string互转换
    C++%f和%lf的区别
  • 原文地址:https://www.cnblogs.com/toone/p/6811942.html
Copyright © 2011-2022 走看看