zoukankan      html  css  js  c++  java
  • 二分查找与几种排序方法

    1. 递归二分查找
    2. 冒泡排序
    3. 选择排序
    4. 插入排序
    5. 归并排序
    6. 快速排序

    1、递归二分查找

    思想

    使用二分查找的前提条件是数组元素必须已经排好序。

    • 二分查找法首先将关键字与数组的中间元素进行比较,考虑下面三种情形:
    • 如果关键字比中间元素小,那么只需在前一半数组元素中进行递归查找;
    • 如果关键字与中间元素相等,则匹配成功,查找结束。

    代码:

    public static int binarySearch(int[] list, int key){
            return binarySearch(list, key, 0, list.length - 1);
        }
        public static int binarySearch(int[] list, int key , int low, int high){
            //没有查找到
            if(low > high)
                return - low - 1;
            
            int mid = (low + high) / 2;
            if(key < list[mid]){
                return binarySearch(list, key, low, mid - 1);
            }else if(key == list[mid]){
                return mid;
            }else{
                return binarySearch(list, key, mid + 1, high);
            }
        }

    ------------------------------------------------- 排序算法 ----------------------------------------------

    各排序算法的时间复杂度、空间复杂度、稳定性:

    排序算法的稳定性:排序前后相等元素相对位置不变,则称排序算法是稳定的;否则排序算法是不稳定的)

    排序算法平均时间复杂度最坏时间复杂度空间复杂度 稳定性 
     冒泡排序  O(n^2)  O(n^2)  O(1) 稳定 
     选择排序  O(n^2)  O(n^2)  O(1) 不稳定
    直接插入排序  O(n^2)  O(n^2)  O(1) 稳定
     归并排序  O(nlogn)  O(nlogn)

     O(n)

    稳定
     快速排序  O(nlogn)  O(n^2)  O(logn) 不稳定
     堆排序  O(nlogn)  O(nlogn)  O(1) 不稳定

    冒泡排序:

      冒泡排序算法需要多次遍历数组(N-1次),在每次遍历中,比较连续相邻的元素。如果一对元素是降序,则互换它们的值;否则保持不变。这样每一次遍历较大的值都沉到了后面:第一次遍历区间为0~N-1,第一次遍历后,最后一个元素成为数组中最大的数;第二次遍历区间为0~N-2,第二次遍历后,倒数第二个元素成为第二大的数……

    • 稳定性稳定。冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。如果两个元素相等,不会把他们俩交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
    • 时间复杂度O(n^2)。需要两个for循环,每次只关注一个元素,平均时间复杂度为O(n^2),最坏的也是O(n^2)。
    • 空间复杂度O(1)。需要一个临时变量来交换元素位置,所以空间复杂度O(1)。

    选择排序:

      选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择最小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。

    • 稳定性不稳定。在一趟选择中,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。比如序列5 8 5 2 9, 我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。
    • 时间复杂度O(n^2)。需要两个for循环,平均时间复杂度为O(n^2),最坏的也是O(n^2)。
    • 空间复杂度O(1)。需要一个临时变量来交换元素位置,所以空间复杂度O(1)。

    插入排序:

      插入排序是重复的将新的元素插入一个排好序的子线性表中,直到整个线性表排好序。插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。当然,刚开始这个有序的小序列只有1个元素,就是第一个元素。比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置......

    • 稳定性稳定。如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变。
    • 时间复杂度O(n^2)。需要两个for循环,平均时间复杂度为O(n^2)。最坏时间O(n^2),最好时间O(n),就是不用交换。
    • 空间复杂度O(1)。需要一个临时变量来交换元素位置,所以空间复杂度O(1)。

    归并排序:

      归并排序是使用分而治之法对数组排序。将数组分为两半,对每部分递归地应用归并排序。在两部分都排好序后,对它们进行归并。先什么都不管,把数组分为两个子数组,一直递归把数组划分为两个子数组,直到数组里只有一个元素,这时候才开始排序,让两个数组间排好序,依次按照递归的返回来把两个数组进行排好序,到最后就可以把整个数组排好序。

      做法:分成两个函数:1)划分数组;2)归并两个有序数组。划分时创建两个临时数组,将数组前半部分与后半部分复制到临时数组中。归并时将它们先排序再归并到原始数组中。

    • 稳定性稳定。在短序列只有1个或2个元素时,1个元素不会交换,2个元素如果大小相等也不交换,这不会破坏稳定性。那么,在短的有序序列合并的过程中,稳定是否受到破坏?没有,合并过程中我们可以保证如果两个当前元素相等时,我们把处在前面的序列的元素保存在结果序列的前面,这样就保证了稳定性。
    • 时间复杂度O(nlogn)。归并排序将数组划分为两个子数组,使用同样的算法对子数组进行递归排序,然后将子数组进行归并,因此T(n)=T(n/2)+T(n/2)+归并用时。第一项是对数组的前半部分排序所需的时间,第二项是对数组的后半部分排序所需的时间。要归并两个数组,最多需要n-1次比较来比较两个子数组中的元素,以及n次移动将元素移到临时数组中,因此归并总时间为2n-1。因此T(n)=T(n/2)+T(n/2)+2n-1=O(nlogn)。
    • 空间复杂度O(n)。归并排序每次递归需要用到一个辅助表,长度与待排序的表相等,虽然递归次数是O(log2n),但每次递归都会释放掉所占的辅助空间,所以下次递归的栈空间和辅助空间与这部分释放的空间就不相关了,这样每一个时刻需要O(n)个空间即可,因而空间复杂度还是O(n)。

    快速排序:

       在数组中选择一个基准元素(pivot),将数组分为两部分,使得第一部分中的所有元素都小于等于pivot,第二部分的所有元素都大于pivot。对第一部分递归的应用快速排序算法,然后对第二部分递归的应用快速排序算法。

    • 稳定性不稳定。快速排序有两个方向,右边的j下标一直往左走,当a[j] > pivot,左边的i下标一直往右走,当a[i] <= pivot。如果i和j都走不动了,i <= j, 交换a[i]和a[j],重复上面的过程,直到i>j,交换a[j]和pivot,完成一趟快速排序。在基准元素pivot和a[j]交换的时候,很有可能把前面的元素的稳定性打乱,比如序列为 5 3 3 4 3 8 9 10 11, 现在基准元素5和3交换就会把元素3的稳定性打乱,所以快速排序是一个不稳定的排序算法,不稳定发生在基准元素和a[j]交换的时刻。
    • 时间复杂度O(nlogn)
      • 最差情况下,划分由n个元素构成的数组需要进行n次比较和n次移动,划分所需时间为O(n),在最差情况下,基准元素每次会将数组划分为一个大的子数组和另外一个空数组,这个大的子数组的大小是在划分前的子数组的大小上减1,该算法需要()+()+...+2+1=O(n^2)时间。
      • 最佳情况下,基准元素每次将数组划分为规模大致相等的两部分,则T(n)=T(n/2)+T(n/2)+划分用时,其中前两项表示在两个子数组上进行递归的快速排序用时,划分用时为O(n),则T(n)=T(n/2)+T(n/2)+n=O(nlogn)。
    • 空间复杂度O(logn)。快速排序每次递归都会返回一个中间值的位置。最优的情况下空间复杂度为O(logn) ,即每一次都平分数组的情况;最差的情况下空间复杂度为O(n) ,即退化为冒泡排序的情况。

    堆排序:

      堆排序使用一个二叉堆,它首先将所有的元素添加到一个堆上,然后不断移除最大的元素以获得一个排好序的线性表。

      该二叉堆是一个完全二叉树,该二叉树具有如下属性:首先它是一个完全二叉树(二叉树的每层都是满的,或者最后一层没填满并且最后一层的叶子都是靠最左放置的),其次每个结点大于或等于它的任意一个孩子

    • 稳定性不稳定
    • 时间复杂度O(nlogn)。

    设h表示n个元素的堆的高度。由于堆是一颗完全二叉树,所以第一层有1(2^0)个结点,第二层有2(2^1)个结点,....,第h层有2^(h-1)个结点,最后第h+1层最少有1个最多有2^h个结点。因此1+2+...+2^(h-1)<n<=1+2+...+2^(h-1)+2^h,即2^h < n+1 <= 2^(h+1),所以h < log(n+1) <= h+1。所以堆的高度为O(logn)。

      • 由于add方法会最追踪从叶子结点到根节点的路径,因此向堆中添加一个新元素最多需要h步,所以建立一个包含n个元素的数组的初始堆需要O(nlogn)时间。
      • 因为remove方法要追踪从根节点到叶子结点的路径,因此从堆中删除根节点后重建堆最多需要n步。由于要调用n次remove方法,所以由堆产生一个有序数组需要时间为O(nlogn)。
    • 空间复杂度O(1)。只是需要一个临时变量来交换元素位置,所以空间复杂度O(1)。

    1、冒泡排序

    动画演示:http://liveexample.pearsoncmg.com/dsanimation/BubbleSortNeweBook.html

    思路

    依次比较相邻的两个数,将小数放在前面,大数放在后面

    即在第一趟:首先比较第1个和第2个数,将小数放前,大数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此继续……直至比较最后两个数,将小数放前,大数放后。重复第一趟步骤,直至全部排序完成。

    第一趟比较完成后,最后一个数一定是数组中最大的一个数,所以第二趟比较的时候最后一个数不参与比较;

    第二趟比较完成后,倒数第二个数也一定是数组中第二大的数,所以第三趟比较的时候最后两个数不参与比较;

    依次类推,每一趟比较次数-1;

    ……

    稳定性:稳定

    时间复杂度:O(n^2)

    空间复杂度:O(1)

    代码:

    public static void bubbleSort(int[] array) {
    
            // 优化:如果在某次遍历中没有发生交换,那么就不用再进行下一次遍历了,因为所有元素已经排好序了
            boolean needNextPass = true;
    
            //需要array.length-1次遍历
            for(int k = 1; k < array.length && needNextPass; k++){
    
                needNextPass = false; //假设不需要进行下次遍历
    
                //第k次遍历处理前array.length-k个数
                for(int i = 0; i < array.length - k; i++){
                    //依次比较相邻两个元素
                    if(array[i] > array[i + 1]){
                        //交换
                        int temp = array[i];
                        array[i] = array[i + 1];
                        array[i + 1] = temp;
    
                        needNextPass = true;  //需要进行下次遍历
                    }
                }
            }
        }

    2、选择排序

    动画演示:http://liveexample.pearsoncmg.com/dsanimation/SelectionSortNeweBook.html

    思路

    找数组中最小的数,并将其和第一个数交换;

    然后从剩下的数中找最小的数,和第二个交换;

    ……一直进行下去,直到仅剩一个数           (是一个递归的过程)

    稳定性:不稳定

    时间复杂度:O(n^2)

    空间复杂度:O(1)

    代码:

    //主程序初始时候执行 selectionSort(array,0, array.length - 1)
    
    public static void selectionSort(double[] array, int low, int high){
            if(low < high){
                int indexOfMin = low;    //最小数下标
                double min = array[low]; //最小数
                //找到最小的数min和最小数下标indexOfMin
                for(int i = low + 1; i <= high; i++){
                    if(array[i] < min){
                        min = array[i];
                        indexOfMin = i;
                    }
                }
                //交换第low个元素与min
                array[indexOfMin] = array[low];
                array[low] = min;
                
                //递归
                selectionSort(array, low + 1, high);
            }
        }

    3、插入排序

    动画演示:http://liveexample.pearsoncmg.com/dsanimation/InsertionSortNeweBook.html

    思路

    重复的将新的元素插入一个排好序的子线性表中,直到整个线性表排好序。

    [0,1,4,6,3]

    我们要做的从a[1]开始,至于为什么不是a[0]。a[0]之前没有与a[0]进行比较的元素。我们插入a[1],这个时候我们需要遍历a[1]和a[1]之前的所有元素并进行比较。设置一个变量j,用来记录第一个 比 a[1]元素小的那个元素的下标,也就是a[1]要插入的位置,这个时候跳出循环,并且没发现一个比a[1]大的元素,就要令这个元素后移一位。依次类推的算法直到整个数组的最后一个。

    稳定性:稳定

    时间复杂度:O(n^2)

    空间复杂度:O(1)

    代码:

    public static void insertionSortt(int[] array){
            //从a[1]开始
            for(int i = 1; i < array.length; i++){
                int currentElement = array[i];
                int j; //标记元素要移动到的位置
                //先判断currentElement前面一个数,如果要移动,移动后再判断前面一个数,直到判断到不需要移动或已经判断到list[0]
                for(j = i - 1; j >=0 && array[j] > currentElement; j--){
                    //将currentElement前面一个数向后移动一位
                    array[j + 1] = array[j];
                }
                array[j + 1] = currentElement;
            }
        }

    4、归并排序

    动画演示:http://liveexample.pearsoncmg.com/dsanimation/MergeSortNeweBook.html

    思想:

    使用分而治之法对数组排序。将数组分为两半,对每部分递归地应用归并排序。在两部分都排好序后,对它们进行归并。

    稳定性:稳定

    时间复杂度:O(nlogn)

    空间复杂度:O(n)

    代码:

    public static void mergeSort(int[] array) {
            if (array.length > 1) {
                // 创建临时数组firstHalf存放前面一半的元素
                int[] firstHalf = new int[array.length / 2];
                System.arraycopy(list, 0, firstHalf, 0, array.length / 2);
                // 递归
                mergeSort(firstHalf);
    
                // 创建临时数组secondHalf存放后面一半的元素
                int lengthOfSecondHalf = array.length - array.length / 2;
                int[] secondHalf = new int[lengthOfSecondHalf];
                System.arraycopy(array, array.length / 2, secondHalf, 0,
                        lengthOfSecondHalf);
                // 递归
                mergeSort(secondHalf);
    
                // 归并到原始数组array中
                merge(firstHalf, secondHalf, array);
            }
        }
    
        /** 归并 */
        public static void merge(int[] array1, int[] array2, int[] temp) {
            /*
             * 归并两个有序数组array1、array2为一个临时数组temp。
             * current1和current2指向array1和array2中要考虑的当前元素,重复比较array1和array2中的当前元素,并将较小的一个元素移动到temp中。
             * 如果较小元素在array1中,current1增加1;如果较小元素在array2中,current2增加1。
             * 最后array1或array2会剩余一个元素没有移动,将它直接复制到temp中。
             */
            int current1 = 0;// array1中要考虑的当前元素
            int current2 = 0;// array2中要考虑的当前元素
            int current3 = 0;// temp中要考虑的当前元素
    
            while (current1 < array1.length && current2 < array2.length) {
                // 如果较小元素在array1中,current1增加1
                if (array1[current1] < array2[current2])
                    temp[current3++] = array1[current1++];
                // 如果较小元素在array2中,current2增加1
                else
                    temp[current3++] = array2[current2++];
            }
    
            while (current1 < array1.length)
                temp[current3++] = array1[current1++];
    
            while (current2 < array2.length)
                temp[current3++] = array2[current2++];
        }

    5、快速排序

    动画演示:http://liveexample.pearsoncmg.com/dsanimation/QuickSortNeweBook.html

    思想

    在数组中选择一个基准元素(pivot),将数组分为两部分,使得第一部分中的所有元素都小于等于pivot,第二部分的所有元素都大于pivot。

    对第一部分递归的应用快速排序算法,然后对第二部分递归的应用快速排序算法。

    稳定性:不稳定

    时间复杂度:O(nlogn),最坏时间复杂度O(n^2)

    空间复杂度:O(logn)

    代码:

        /**快速排序算法*/
        public static void quickSort(int[] data, int start, int end) throws Exception{
            if(start >= end)
                return;
            
            //分而治之
            int index = partition(data, start, end);
            if(index > start)
                quickSort(data, start, index - 1);
            if(index < end)
                quickSort(data, index + 1, end);
            
        }
        /**重要*/
        //选择一个基准元素,把data中比基准元素小的数字移到其左边,比基准元素大的数字移到其右边。并返回移动后基准元素下标
        public static int partition(int[] data, int low,int high) throws Exception{
            if(data == null || low < 0 || high >= data.length)
                throw new Exception("Invalid Parameters");
            
            //选择第一个数作为基准元素
            int pivot = data[low];
            
            while(low < high){
                //从右向左找小于基准元素的值
                //注意一定要加等号,不然可能会出现死循环
                while(low < high && data[high] >= pivot)
                    high--;
                data[low] = data[high];//赋值
                
                //从左向右找大于基准元素的值
                while(low < high && data[low] <= high)
                    low++;
                data[high] = data[low];
            }
            //此时low与high在同一个位置,把pivot的值给low
            data[low] = pivot;
            
            return low;
            
        }

     6、堆排序

    动画演示:http://liveexample.pearsoncmg.com/dsanimation/HeapeBook.html

    堆排序使用一个二叉堆,它首先将所有的元素添加到一个堆上,然后不断移除最大的元素以获得一个排好序的线性表。

    堆排序使用一个二叉堆,该二叉堆是一个完全二叉树,该二叉树具有如下属性:

    • 形状:是一个完全二叉树。(如果一棵二叉树的每层都是满的,或者最后一层没填满并且最后一层的叶子都是靠最左放置的,那么这棵二叉树就是完全的。)
    • 堆属性:每个结点大于或等于它的任意一个孩子

    给堆添加一个结点:

    首先将它添加到堆的末尾;
    将最后一个结点作为当前节点; while(当前结点大于它的父节点){ 将当前结点和它的父节点交换; }

    从对中删除最大元素,即删除根节点:

    将最后一个结点替换根结点;
    让根结点成为当前结点;
    while(当前结点具有子节点并且当前结点小于它的子结点){
        将当前结点和它的子节点交换;
    }

    这样堆排序的步骤:首先使用Heap创建一个对象,使用add方法将所有元素添加到堆中,然后使用remove方法从堆中删除所有元素,记录删除的元素就是一个有序数组了。

    稳定性不稳定

    时间复杂度O(nlogn)

      设h表示n个元素的堆的高度。由于堆是一颗完全二叉树,所以第一层有1(2^0)个结点,第二层有2(2^1)个结点,....,第h层有2^(h-1)个结点,最后第h+1层最少有1个最多有2^h个结点。因此

      1+2+...+2^(h-1)< n <= 1+2+...+2^(h-1)+2^h,即2^h < n+1 <= 2^(h+1),

      所以h < log(n+1) <= h+1。所以堆的高度为O(logn)。 

      由于add方法会最追踪从叶子结点到根节点的路径,因此向堆中添加一个新元素最多需要h步,所以建立一个包含n个元素的数组的初始堆需要O(nlogn)时间。因为remove方法要追踪从根节点到叶子结点的路径,因此从堆中删除根节点后重建堆最多需要n步。由于要调用n次remove方法,所以由堆产生一个有序数组需要时间为O(nlogn)。

    空间复杂度O(1)。只是需要一个临时变量来交换元素位置,所以空间复杂度O(1)。

    代码:

        public static void heapSort(int[] array) {
            Heap<Integer> heap = new Heap();
            //使用add方法将所有元素添加到堆中
            for(int i = 0; i < array.length; i++)
                heap.add(array[i]);
            //然后使用remove方法从堆中删除所有元素。 以降序删除这些元素,得到的结果就是升序的
            for(int i = array.length - 1; i >= 0; i--) 
                array[i] = heap.remove();
        }
    ----------------------------------------------------------------------------------
    /**建一个堆类*/
    class Heap<E extends Comparable<E>> {
        //利用list存结点,则根节点下标为0, 下标为i的父节点下标应为(i-1)/2,子节点应为2*i+1、2*i+2
        private ArrayList<E> list = new ArrayList<E>();
        //构造方法
        public Heap() {}
        
        /**向堆中添加元素*/
        public void add(E item) {
            //首先将它添加到堆的末尾
            list.add(item);
            
            //将最后一个结点作为当前结点
            int currentIndex = list.size() - 1;
            while(currentIndex > 0) {
                //父节点
                int parentIndex = (currentIndex - 1) / 2;
                //当当前节点大于它的父节点时,将当前节点和它的父节点交换
                if(list.get(currentIndex).compareTo(list.get(parentIndex)) > 0) {
                    E temp = list.get(currentIndex);
                    list.set(currentIndex, list.get(parentIndex));
                    list.set(parentIndex, temp);
                    //currentIndex移到上一层
                    currentIndex = parentIndex;
                }else {
                    break;
                }
            }
        }
        
        /**删除堆中的最大元素(删除根节点)*/
        public E remove() {
            if(list.size() == 0)
                return null;
            
            E removeItem = list.get(0);
            //用最后一个结点替换根结点,并删除这个最大结点(原来的根结点)
            list.set(0, list.get(list.size() - 1));
            list.remove(list.size() - 1);
            
            //让根节点成为当前结点
             int currentIndex = 0;
             //当当前结点具有子结点并且当前结点小于它的子结点时,将当前结点和它较大的子结点交换
             while(currentIndex < list.size()) {
                 int leftIndex = currentIndex * 2 + 1;//左孩子结点
                 int rightIndex = currentIndex * 2 + 2;//右孩子结点
                 if(leftIndex >= list.size())
                     break; //说明没有孩子结点
                 
                //取左孩子结点和右孩子结点最大的结点,然后与当前结点比较
                 int maxIndex = leftIndex;
                 if(rightIndex < list.size()) {
                     if(list.get(rightIndex).compareTo(list.get(leftIndex)) > 0)
                         maxIndex = rightIndex;
                 }
                 if(list.get(currentIndex).compareTo(list.get(maxIndex)) < 0) {
                     E temp = list.get(currentIndex);
                     list.set(currentIndex, list.get(maxIndex));
                     list.set(maxIndex, temp);
                     //currentIndex移到下一层
                     currentIndex = maxIndex;
                 }else {
                     break;
                 }
             }
            
            return removeItem;
        }
    
    }
  • 相关阅读:
    [GL]行星运行1
    一个图的带权邻接表存储结构的应用
    [GDAL]3.影像金字塔构建
    [GDAL]1.GDAL1.8.1编译与第一个程序
    [GDAL]2.读取栅格和矢量数据
    C#迭代器
    GoogleEarth缓存机制探索
    AE开发三维的不足!
    [GDAL]4.影像的读取和显示
    [STL学习]1.概述
  • 原文地址:https://www.cnblogs.com/toria/p/sort.html
Copyright © 2011-2022 走看看