zoukankan      html  css  js  c++  java
  • Deep learning:十五(SelfTaught Learning练习)

      前言:

      本次实验主要是练习soft- taught learning的实现。参考的资料为网页:http://deeplearning.stanford.edu/wiki/index.php/Exercise:Self-Taught_Learning。Soft-taught leaning是用的无监督学习来学习到特征提取的参数,然后用有监督学习来训练分类器。这里分别是用的sparse autoencoder和softmax regression。实验的数据依旧是手写数字数据库MNIST Dataset.

      实验基础:

      从前面的知识可以知道,sparse autoencoder的输出应该是和输入数据尺寸大小一样的,且很相近,那么我们训练出的sparse autoencoder模型该怎样提取出特征向量呢?其实输入样本经过sparse code提取出特征的表达式就是隐含层的输出了,首先来看看前面的经典sparse code模型,如下图所示:

       

      拿掉那个后面的输出层后,隐含层的值就是我们所需要的特征值了,如下图所示:

       

      从教程中可知,在unsupervised learning中有两个观点需要特别注意,一个是self-taught learning,一个是semi-supervised learning。Self-taught learning是完全无监督的。教程中有举了个例子,很好的说明了这个问题,比如说我们需要设计一个系统来分类出轿车和摩托车。如果我们给出的训练样本图片是自然界中随便下载的(也就是说这些图片中可能有轿车和摩托车,有可能都没有,且大多数情况下是没有的),然后使用的是这些样本来特征模型的话,那么此时的方法就叫做self-taught learning。如果我们训练的样本图片都是轿车和摩托车的图片,只是我们不知道哪张图对应哪种车,也就是说没有标注,此时的方法不能叫做是严格的unsupervised feature,只能叫做是semi-supervised learning。

      一些matlab函数:

      numel:

      比如说n = numel(A)表示返回矩阵A中元素的个数。

      unique:

      unique为找出向量中的非重复元素并进行排序后输出。

      

      实验结果:

      采用数字5~9的样本来进行无监督训练,采用的方法是sparse autoencoder,可以提取出这些数据的权值,权值转换成图片显示如下:

       

      但是本次实验主要是进行0~4这5个数字的分类,虽然进行无监督训练用的是数字5~9的训练样本,这依然不会影响后面的结果。只是后面的分类器设计是用的softmax regression,所以是有监督的。最后据官网网页上的结果精度是98%,而直接用原始的像素点进行分类器的设计不仅效果要差(才96%),而且训练的速度也会变慢不少。

      实验主要部分代码:

      stlExercise.m:

    %% CS294A/CS294W Self-taught Learning Exercise
    
    %  Instructions
    %  ------------
    % 
    %  This file contains code that helps you get started on the
    %  self-taught learning. You will need to complete code in feedForwardAutoencoder.m
    %  You will also need to have implemented sparseAutoencoderCost.m and 
    %  softmaxCost.m from previous exercises.
    %
    %% ======================================================================
    %  STEP 0: Here we provide the relevant parameters values that will
    %  allow your sparse autoencoder to get good filters; you do not need to 
    %  change the parameters below.
    
    inputSize  = 28 * 28;
    numLabels  = 5;
    hiddenSize = 200;
    sparsityParam = 0.1; % desired average activation of the hidden units.
                         % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
                         %  in the lecture notes). 
    lambda = 3e-3;       % weight decay parameter       
    beta = 3;            % weight of sparsity penalty term   
    maxIter = 400;
    
    %% ======================================================================
    %  STEP 1: Load data from the MNIST database
    %
    %  This loads our training and test data from the MNIST database files.
    %  We have sorted the data for you in this so that you will not have to
    %  change it.
    
    % Load MNIST database files
    mnistData   = loadMNISTImages('train-images.idx3-ubyte');
    mnistLabels = loadMNISTLabels('train-labels.idx1-ubyte');
    
    % Set Unlabeled Set (All Images)
    
    % Simulate a Labeled and Unlabeled set
    labeledSet   = find(mnistLabels >= 0 & mnistLabels <= 4);
    unlabeledSet = find(mnistLabels >= 5);
    
    %%增加的一行代码
    unlabeledSet = unlabeledSet(1:end/3);
    
    numTest = round(numel(labeledSet)/2);%拿一半的样本来训练%
    numTrain = round(numel(labeledSet)/3);
    trainSet = labeledSet(1:numTrain);
    testSet  = labeledSet(numTrain+1:2*numTrain);
    
    unlabeledData = mnistData(:, unlabeledSet);%%为什么这两句连在一起都要出错呢?
    % pack;
    trainData   = mnistData(:, trainSet);
    trainLabels = mnistLabels(trainSet)' + 1; % Shift Labels to the Range 1-5
    
    % mnistData2 = mnistData;
    testData   = mnistData(:, testSet);
    testLabels = mnistLabels(testSet)' + 1;   % Shift Labels to the Range 1-5
    
    % Output Some Statistics
    fprintf('# examples in unlabeled set: %d\n', size(unlabeledData, 2));
    fprintf('# examples in supervised training set: %d\n\n', size(trainData, 2));
    fprintf('# examples in supervised testing set: %d\n\n', size(testData, 2));
    
    %% ======================================================================
    %  STEP 2: Train the sparse autoencoder
    %  This trains the sparse autoencoder on the unlabeled training
    %  images. 
    
    %  Randomly initialize the parameters
    theta = initializeParameters(hiddenSize, inputSize);
    
    %% ----------------- YOUR CODE HERE ----------------------
    %  Find opttheta by running the sparse autoencoder on
    %  unlabeledTrainingImages
    
    opttheta = theta; 
    addpath minFunc/
    options.Method = 'lbfgs';
    options.maxIter = 400;
    options.display = 'on';
    [opttheta, loss] = minFunc( @(p) sparseAutoencoderLoss(p, ...
          inputSize, hiddenSize, ...
          lambda, sparsityParam, ...
          beta, unlabeledData), ...
          theta, options);
    
    
    %% -----------------------------------------------------
                              
    % Visualize weights
    W1 = reshape(opttheta(1:hiddenSize * inputSize), hiddenSize, inputSize);
    display_network(W1');
    
    %%======================================================================
    %% STEP 3: Extract Features from the Supervised Dataset
    %  
    %  You need to complete the code in feedForwardAutoencoder.m so that the 
    %  following command will extract features from the data.
    
    trainFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ...
                                           trainData);
    
    testFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ...
                                           testData);
    
    %%======================================================================
    %% STEP 4: Train the softmax classifier
    
    softmaxModel = struct;  
    %% ----------------- YOUR CODE HERE ----------------------
    %  Use softmaxTrain.m from the previous exercise to train a multi-class
    %  classifier. 
    
    %  Use lambda = 1e-4 for the weight regularization for softmax
    lambda = 1e-4;
    inputSize = hiddenSize;
    numClasses = numel(unique(trainLabels));%unique为找出向量中的非重复元素并进行排序
    
    % You need to compute softmaxModel using softmaxTrain on trainFeatures and
    % trainLabels
    
    
    % You need to compute softmaxModel using softmaxTrain on trainFeatures and
    % trainLabels
    
    options.maxIter = 100;
    softmaxModel = softmaxTrain(inputSize, numClasses, lambda, ...
                                trainFeatures, trainLabels, options);
    
    
    
    %% -----------------------------------------------------
    
    
    %%======================================================================
    %% STEP 5: Testing 
    
    %% ----------------- YOUR CODE HERE ----------------------
    % Compute Predictions on the test set (testFeatures) using softmaxPredict
    % and softmaxModel
    
    
    [pred] = softmaxPredict(softmaxModel, testFeatures);
    
    
    %% -----------------------------------------------------
    
    % Classification Score
    fprintf('Test Accuracy: %f%%\n', 100*mean(pred(:) == testLabels(:)));
    
    % (note that we shift the labels by 1, so that digit 0 now corresponds to
    %  label 1)
    %
    % Accuracy is the proportion of correctly classified images
    % The results for our implementation was:
    %
    % Accuracy: 98.3%
    %
    % 

      feedForwardAutoencoder.m:

    function [activation] = feedForwardAutoencoder(theta, hiddenSize, visibleSize, data)
    
    % theta: trained weights from the autoencoder
    % visibleSize: the number of input units (probably 64) 
    % hiddenSize: the number of hidden units (probably 25) 
    % data: Our matrix containing the training data as columns.  So, data(:,i) is the i-th training example. 
      
    % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this 
    % follows the notation convention of the lecture notes. 
    
    W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
    b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
    
    %% ---------- YOUR CODE HERE --------------------------------------
    %  Instructions: Compute the activation of the hidden layer for the Sparse Autoencoder.
    activation  = sigmoid(W1*data+repmat(b1,[1,size(data,2)]));
    
    %-------------------------------------------------------------------
    
    end
    
    %-------------------------------------------------------------------
    % Here's an implementation of the sigmoid function, which you may find useful
    % in your computation of the costs and the gradients.  This inputs a (row or
    % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). 
    
    function sigm = sigmoid(x)
        sigm = 1 ./ (1 + exp(-x));
    end

      参考资料:

         http://deeplearning.stanford.edu/wiki/index.php/Exercise:Self-Taught_Learning

         MNIST Dataset

    作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 欢迎转载或分享,但请务必声明文章出处。 (新浪微博:tornadomeet,欢迎交流!)
  • 相关阅读:
    this
    git使用整个过程整理
    javaScript事件知识点
    charles-web端开发者实用功能点
    react native 添加第三方插件react-native-orientation(横竖屏设置功能 android)
    react native 运行项目下载gradle慢的解决办法
    移动端 滑动组件 slip
    高逼格 分页列表 bootstrap-table
    reactjs 接入数据模型以及markdown语法的支持
    react-native 环境搭建以及项目创建打包
  • 原文地址:https://www.cnblogs.com/tornadomeet/p/2979408.html
Copyright © 2011-2022 走看看