zoukankan      html  css  js  c++  java
  • CentOS6.4上搭建hadoop-2.4.0集群

    公司Commerce Cloud平台上提供申请主机的服务。昨天试了下,申请了3台机器,搭了个hadoop环境。以下是机器的一些配置:

    emi-centos-6.4-x86_64
    medium | 6GB 内存| 2 虚拟内核 | 30.0GB 盘

    3个机器的主机和ip规划如下:

    IP地址           主机名    用途

    192.168.0.101  hd1     namenode
    192.168.0.102  hd2     datanode
    192.168.0.103  hd3     datanode

    一、系统设置

    (所有步骤都需要在所有节点执行)

    1. 修改主机名及ip地址解析

    1) 修改主机名

    [root@hd1 toughhou]# hostname hd1
    
    [root@hd1 toughhou]# cat /etc/sysconfig/network
    NETWORKING=yes
    HOSTNAME=hd1

    2) 增加ip和主机映射

    [root@hd1 toughhou]# vi /etc/hosts
    127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
    ::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
    192.168.0.101 hd1
    192.168.0.102 hd2
    192.168.0.103 hd3

    3) 验证是否成功

    [toughhou@hd1 ~]$ ping hd2
    PING hd2 (192.168.0.102) 56(84) bytes of data.
    64 bytes from hd2 (192.168.0.102): icmp_seq=1 ttl=63 time=2.55 ms
    
    [toughhou@hd1 ~]$ ping hd3
    PING hd3 (192.168.0.103) 56(84) bytes of data.
    64 bytes from hd3 (192.168.0.103): icmp_seq=1 ttl=63 time=2.48 ms

    能ping通说明已经OK。


    2. 关闭防火墙
    [root@hd1 toughhou]# chkconfig iptables off

    3. SSH免密码登陆

    1) 生成密钥与公钥
    登陆到hd1,把生成的id_rsa.pub(公钥)内容cat到authorized_keys文件中。同时登陆到hd2, hd3,生成id_rsa.pub,并把hd2, hd3各自的id_rsa.pub的内容copy到hd1中的authorzied_keys中。最后从hd1中scp到hd2, hd3的.ssh目录中。

    [toughhou@hd1 ~]$ ssh-keygen -t rsa
    [toughhou@hd1 ~]$ cat id_rsa.pub >> authorized_keys
    
    [toughhou@hd2 ~]$ ssh-keygen -t rsa
    [toughhou@hd2 ~]$ cat id_rsa.pub >> authorized_keys
    
    [toughhou@hd3 ~]$ ssh-keygen -t rsa
    [toughhou@hd3 ~]$ cat id_rsa.pub >> authorized_keys

    2) scp authorized_keys到hd2, hd3

    [toughhou@hd1 ~]$ scp authorized_keys 192.168.0.102:/home/toughhou/.ssh/
    [toughhou@hd1 ~]$ scp authorized_keys 192.168.0.103:/home/toughhou/.ssh/

    3) 验证ssh登陆是否是免密码

    (第一次需要密码,若配置正确的话之后就不用密码了。)

    [toughhou@hd1 ~]$ ssh 192.168.0.102
    [toughhou@hd2 ~]$
    
    [toughhou@hd1 ~]$ ssh 192.168.0.103
    [toughhou@hd3 ~]$

    关于SSH免密码登陆,也可以参考文章 “SSH时不需输入密码”,它更具体地说了关于SSH设置。

    二、安装jdk、hadoop及设置环境变量

    1. 下载jdk、hadoop安装包
    download.oracle.com/otn-pub/java/jdk/7u65-b17/jdk-7u65-linux-x64.tar.gz
    http://mirrors.cnnic.cn/apache/hadoop/common/hadoop-2.4.0/hadoop-2.4.0.tar.gz


    2. 解压

    [toughhou@hd1 software]$ tar zxvf jdk-7u65-linux-x64.gz
    [toughhou@hd1 software]$ tar zxvf hadoop-2.4.0.tar.gz
    
    [root@hd1 software]# mv hadoop-2.4.0 /opt/hadoop-2.4.0
    [root@hd1 software]# mv jdk1.7.0_65    /opt/jdk1.7.0


    3. 设置Java环境变量

    以root用户登陆编辑/etc/profile,加入以下内容:

    [root@hd1 software]# vi /etc/profile
    
    #java
    export JAVA_HOME=/opt/jdk1.7.0
    export JRE_HOME=$JAVA_HOME/jre
    export PATH=$PATH:$JAVA_HOME/bin
    export CLASSPATH=./:$JAVA_HOME/lib:$JAVA_HOME/jre/lib
    
    #hadoop
    export HADOOP_HOME=/opt/hadoop-2.4.0
    export HADOOP_COMMON_HOME=$HADOOP_HOME
    export HADOOP_HDFS_HOME=$HADOOP_HOME
    export HADOOP_MAPRED_HOME=$HADOOP_HOME
    export HADOOP_YARN_HOME=$HADOOP_HOME
    export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
    export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$HADOOP_HOME/lib
    export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
    export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"
    export JAVA_LIBRARY_PATH=$HADOOP_HOME/lib/native


    4. 验证环境变量

    [toughhou@hd1 hadoop]$ java -version
    
    [toughhou@hd1 hadoop]$ hadoop
    Usage: hadoop [--config confdir] COMMAND

    三、hadoop集群设置

    1. 修改hadoop配置文件

    [toughhou@hd1 hadoop]$ cd /opt/hadoop-2.4.0/etc/hadoop

    1) hadoop-env.sh、yarn-env.sh 设置JAVA_HOME环境变量

    最开始以为已经在/etc/profile设置了JAVA_HOME,所以在hadoop-env.sh和yarn-env.sh中已经能成功获取到JAVA_HOME,所以就不用再设置了。最终发现这在hadoop-2.4.0中行不通,start-all.sh的时候出错了(hd1: Error: JAVA_HOME is not set and could not be found.)。

    找到里面的JAVA_HOME,修改为实际路径


    2) slaves
    这个文件配置所有datanode节点,以便namenode搜索

    [toughhou@hd1 hadoop]$ vi slaves 
    hd2
    hd3

    3) core-site.xml

    <configuration>
        <property>
            <name>fs.defaultFS</name>
            <value>hdfs://hd1:9000</value>
        </property>
        <property>
            <name>io.file.buffer.size</name>
            <value>131072</value>
        </property>
        <property>
            <name>hadoop.tmp.dir</name>
            <value>/hadoop/temp</value>
            <description>A base for other temporary directories.</description>
        </property>
        <property>
            <name>hadoop.proxyuser.root.hosts</name>
            <value>hd1</value>
        </property>
        <property>
            <name>hadoop.proxyuser.root.groups</name>
            <value>*</value>
        </property>
    </configuration>
    View Code

    4) hdfs-site.xml

    <configuration>
        <property>
            <name>dfs.namenode.name.dir</name>
            <value>/hadoop/name</value>
        <final>true</final>
        </property>
        <property>
            <name>dfs.datanode.data.dir</name>
            <value>/hadoop/data</value>
        <final>true</final>
        </property>
        <property>
            <name>dfs.replication</name>
        <value>2</value>
        </property>
        <property>
            <name>dfs.permissions</name>
            <value>false</value>
        </property>
    </configuration>
    View Code

    5) mapred-site.xml

    <configuration>
        <property>
            <name>fs.defaultFS</name>
            <value>hdfs://hd1:9000</value>
        </property>
        <property>
            <name>io.file.buffer.size</name>
            <value>131072</value>
        </property>
        <property>
            <name>hadoop.tmp.dir</name>
            <value>/hadoop/temp</value>
            <description>A base for other temporary directories.</description>
        </property>
        <property>
            <name>hadoop.proxyuser.root.hosts</name>
            <value>hd1</value>
        </property>
        <property>
            <name>hadoop.proxyuser.root.groups</name>
            <value>*</value>
        </property>
    </configuration>
    View Code

    6) yarn-site.xml

    <configuration>
    <property>
    <name>yarn.resourcemanager.address</name>
    <value>hd1:18040</value>
    </property>
    <property>
    <name>yarn.resourcemanager.scheduler.address</name>
    <value>hd1:18030</value>
    </property>
    <property>
    <name>yarn.resourcemanager.resource-tracker.address</name>
    <value>hd1:18025</value>
    </property>
    <property>
    <name>yarn.resourcemanager.admin.address</name>
    <value>hd1:18041</value>
    </property>
    <property>
    <name>yarn.resourcemanager.webapp.address</name>
    <value>hd1:8088</value>
    </property>
    <property>
    <name>yarn.nodemanager.local-dirs</name>
    <value>/hadoop/mynode/my</value>
    </property>
    <property>
    <name>yarn.nodemanager.log-dirs</name>
    <value>/hadoop/mynode/logs</value>
    </property>
    <property>
    <name>yarn.nodemanager.log.retain-seconds</name>
    <value>10800</value>
    </property>
    <property>
    <name>yarn.nodemanager.remote-app-log-dir</name>
    <value>/logs</value>
    </property>
    <property>
    <name>yarn.nodemanager.remote-app-log-dir-suffix</name>
    <value>logs</value>
    </property>
    <property>
    <name>yarn.log-aggregation.retain-seconds</name>
    <value>-1</value>
    </property>
    <property>
    <name>yarn.log-aggregation.retain-check-interval-seconds</name>
    <value>-1</value>
    </property>
    <property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
    </property>
    </configuration>
    View Code

    2. 把以下文件复制到其它节点

    [root@hd1 toughhou]# scp -R /opt/hadoop-2.4.0/ hd2:/opt/
    [root@hd1 toughhou]# scp -R /opt/hadoop-2.4.0/ hd3:/opt/
    
    [root@hd1 toughhou]# scp -R /opt/jdk1.7.0/ hd2:/opt/
    [root@hd1 toughhou]# scp -R /opt/jdk1.7.0/ hd3:/opt/
    
    [root@hd1 toughhou]# scp /etc/profile hd2:/etc/profile
    [root@hd1 toughhou]# scp /etc/profile hd3:/etc/profile
    
    [root@hd1 toughhou]# scp /etc/hosts hd2:/etc/hosts
    [root@hd1 toughhou]# scp /etc/hosts hd3:/etc/hosts

     配置完成之后需要重启电脑

    3. namenode初始化

    只需要第一次的时候初始化,之后就不需要了

    [toughhou@hd1 bin]$ hdfs namenode -format

    如果“Exiting with status 0”,就说明OK。
    14/07/23 03:26:33 INFO util.ExitUtil: Exiting with status 0


    4. 启动集群

    [toughhou@hd1 sbin]$ cd /opt/hadoop-2.4.0/sbin
    
    [toughhou@hd1 sbin]$ ./start-all.sh 
    This script is Deprecated. Instead use start
    -dfs.sh and start-yarn.sh Starting namenodes on [hd1] hd1: namenode running as process 12580. Stop it first. hd2: starting datanode, logging to /opt/hadoop-2.4.0/logs/hadoop-toughhou-datanode-hd2.out hd3: starting datanode, logging to /opt/hadoop-2.4.0/logs/hadoop-toughhou-datanode-hd3.out Starting secondary namenodes [0.0.0.0] 0.0.0.0: secondarynamenode running as process 12750. Stop it first. starting yarn daemons resourcemanager running as process 11900. Stop it first. hd3: starting nodemanager, logging to /opt/hadoop-2.4.0/logs/yarn-toughhou-nodemanager-hd3.out hd2: starting nodemanager, logging to /opt/hadoop-2.4.0/logs/yarn-toughhou-nodemanager-hd2.out

    5. 查看各节点的状态

    [toughhou@hd1 sbin]$ jps
    16358 NameNode
    16535 SecondaryNameNode
    16942 Jps
    16683 ResourceManage
    
    [toughhou@hd2 ~]$ jps
    2253 NodeManager
    2369 Jps
    2152 DataNode
    
    [toughhou@hd3 ~]$ jps
    2064 NodeManager
    2178 Jps
    1963 DataNode

    以上说明都OK。


    6. windows添加快捷访问

    为了方便访问,我们也可以编辑 %systemroot%system32driversetchosts 文件,加入以下的 ip和主机映射

    192.168.0.101 hd1
    192.168.0.102 hd2
    192.168.0.103 hd3

    这样,我们在自己机器上也可以通过 http://hd2:8042/node 方式访问节点,而没必要用 http://192.168.0.102:8042/node。


    7. wordcount 测试

    为了更进一步验证hadoop环境,我们可以运行hadoop自带的例子。

    wordcount是hadoop最经典的mapreduce例子。我们进入到相应目录运行自带的jar包,来测试hadoop环境是否OK。

    具体步骤:

    1) hdfs上创建目录

    [toughhou@hd1 ~]$ hadoop fs -mkdir /in/wordcount
    [toughhou@hd1 ~]$ hadoop fs -mkdir /out/

    2) 上传文件到hdfs

    [toughhou@hd1 ~]$ cat in1.txt
    Hello World , Hello China, Hello Shanghai
    I love China
    How are you
    
    [toughhou@hd1 ~]$ hadoop fs -put in1.txt /in/wordcount

    3) 运行wordcount

    [toughhou@hd1 ~]$ cd /opt/hadoop-2.4.0/share/hadoop/mapreduce/
    
    [toughhou@hd2 mapreduce]$ hadoop jar hadoop-mapreduce-examples-2.4.0.jar wordcount /in/wordcount /out/out1
    
    14/07/23 10:42:36 INFO client.RMProxy: Connecting to ResourceManager at hd1/192.168.0.101:18040
    14/07/23 10:42:38 INFO input.FileInputFormat: Total input paths to process : 2
    14/07/23 10:42:38 INFO mapreduce.JobSubmitter: number of splits:2
    14/07/23 10:42:38 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1406105556378_0003
    14/07/23 10:42:38 INFO impl.YarnClientImpl: Submitted application application_1406105556378_0003
    14/07/23 10:42:38 INFO mapreduce.Job: The url to track the job: http://hd1:8088/proxy/application_1406105556378_0003/
    14/07/23 10:42:38 INFO mapreduce.Job: Running job: job_1406105556378_0003
    14/07/23 10:42:46 INFO mapreduce.Job: Job job_1406105556378_0003 running in uber mode : false
    14/07/23 10:42:46 INFO mapreduce.Job: map 0% reduce 0%
    14/07/23 10:42:55 INFO mapreduce.Job: map 100% reduce 0%
    14/07/23 10:43:01 INFO mapreduce.Job: map 100% reduce 100%

    4) 查看运行结果

    [toughhou@hd2 mapreduce]$ hadoop fs -cat /out/out4/part-r-00000
    , 1
    China 1
    China, 1
    Hello 3
    How 1
    I 1
    Shanghai 1
    World 1
    are 1
    love 1
    you 1

    到此,全部结束。整个hadoop-2.4.0集群搭建过程全部结束。

  • 相关阅读:
    TabControl
    Loading
    Dialog
    Combobox
    Markdown编辑器Editor.md使用方式
    XSS攻击
    跨域解决方案及实现
    angular4 自定义表单组件
    angular4 Form表单相关
    js 详解setTimeout定时器
  • 原文地址:https://www.cnblogs.com/toughhou/p/3864170.html
Copyright © 2011-2022 走看看