zoukankan      html  css  js  c++  java
  • Redis实用监控工具一览

    Redis已经成为web应用开发不可或缺的一个组成部分,在项目中的应用越来越广泛,这篇文章就来讲讲那些关于Redis监控的那点事。

    vredis-benchmark

    1.1 简介

    第一个就介绍一下,Redis自带的性能检测工具redis-benchmark, 该工具可以模拟 N 个客户端同时发出 Y 个请求。 可以使用 redis-benchmark -h 来查看基准参数。

    1.2 命令格式:

    redis-benchmark [-h ] [-p ] [-c ] [-n <requests]> [-k ]

    1.3 参数介绍:

    序号选项描述默认值
    1 -h 指定服务器主机名 127.0.0.1
    2 -p 指定服务器端口 6379
    3 -s 指定服务器 socket  
    4 -c 指定并发连接数 50
    5 -n 指定请求数 10000
    6 -d 以字节的形式指定 SET/GET 值的数据大小 2
    7 -k 1=keep alive 0=reconnect 1
    8 -r SET/GET/INCR 使用随机 key, SADD 使用随机值  
    9 -P 通过管道传输 <numreq> 请求 1
    10 -q 强制退出 redis。仅显示 query/sec 值  
    11 --csv 以 CSV 格式输出  
    12 -l 生成循环,永久执行测试  
    13 -t 仅运行以逗号分隔的测试命令列表。  
    14 -I Idle 模式。仅打开 N 个 idle 连接并等待。  

    1.4 实例:

    1.4.1 同时执行1000个请求来检测性能:

    redis-benchmark -n 1000 -q

    Redis监控工具

    1.4.2 50个并发请求,10000个请求,检测Redis性能:

    redis-benchmark -h localhost -p 6379 -c 50 -n 10000

    [root@localhost toutou]# redis-benchmark -h localhost -p 6379 -c 50 -n 10000
    ====== PING_INLINE ======
      10000 requests completed in 0.11 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    96.25% <= 1 milliseconds
    98.38% <= 2 milliseconds
    99.01% <= 3 milliseconds
    100.00% <= 4 milliseconds
    88495.58 requests per second
    
    ====== PING_BULK ======
      10000 requests completed in 0.10 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    97.74% <= 1 milliseconds
    100.00% <= 2 milliseconds
    95238.10 requests per second
    
    ====== SET ======
      10000 requests completed in 0.11 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    98.44% <= 1 milliseconds
    100.00% <= 1 milliseconds
    93457.95 requests per second
    
    ====== GET ======
      10000 requests completed in 0.11 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    98.33% <= 1 milliseconds
    99.13% <= 2 milliseconds
    100.00% <= 2 milliseconds
    93457.95 requests per second
    
    ====== INCR ======
      10000 requests completed in 0.10 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    98.28% <= 1 milliseconds
    100.00% <= 1 milliseconds
    95238.10 requests per second
    
    ====== LPUSH ======
      10000 requests completed in 0.10 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    98.70% <= 1 milliseconds
    100.00% <= 1 milliseconds
    97087.38 requests per second
    
    ====== RPUSH ======
      10000 requests completed in 0.10 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    98.66% <= 1 milliseconds
    100.00% <= 1 milliseconds
    95238.10 requests per second
    
    ====== LPOP ======
      10000 requests completed in 0.15 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    93.78% <= 1 milliseconds
    96.51% <= 2 milliseconds
    97.35% <= 3 milliseconds
    98.41% <= 4 milliseconds
    99.02% <= 5 milliseconds
    99.23% <= 6 milliseconds
    99.46% <= 7 milliseconds
    99.96% <= 8 milliseconds
    99.97% <= 9 milliseconds
    100.00% <= 9 milliseconds
    67567.57 requests per second
    
    ====== RPOP ======
      10000 requests completed in 0.31 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    65.78% <= 1 milliseconds
    84.10% <= 2 milliseconds
    90.96% <= 3 milliseconds
    94.19% <= 4 milliseconds
    95.72% <= 5 milliseconds
    97.05% <= 6 milliseconds
    98.33% <= 7 milliseconds
    98.80% <= 8 milliseconds
    99.40% <= 9 milliseconds
    99.72% <= 10 milliseconds
    100.00% <= 14 milliseconds
    31746.03 requests per second
    
    ====== SADD ======
      10000 requests completed in 0.19 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    93.00% <= 1 milliseconds
    96.88% <= 2 milliseconds
    98.33% <= 3 milliseconds
    98.92% <= 6 milliseconds
    98.94% <= 7 milliseconds
    98.95% <= 9 milliseconds
    99.04% <= 10 milliseconds
    99.48% <= 12 milliseconds
    99.61% <= 14 milliseconds
    99.62% <= 15 milliseconds
    99.99% <= 16 milliseconds
    100.00% <= 16 milliseconds
    52083.33 requests per second
    
    ====== HSET ======
      10000 requests completed in 0.11 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    95.90% <= 1 milliseconds
    99.95% <= 2 milliseconds
    100.00% <= 2 milliseconds
    90909.09 requests per second
    
    ====== SPOP ======
      10000 requests completed in 0.11 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    97.04% <= 1 milliseconds
    99.75% <= 2 milliseconds
    99.78% <= 3 milliseconds
    100.00% <= 3 milliseconds
    90909.09 requests per second
    
    ====== LPUSH (needed to benchmark LRANGE) ======
      10000 requests completed in 0.11 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    96.48% <= 1 milliseconds
    99.46% <= 2 milliseconds
    99.95% <= 3 milliseconds
    100.00% <= 3 milliseconds
    87719.30 requests per second
    
    ====== LRANGE_100 (first 100 elements) ======
      10000 requests completed in 0.33 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    32.63% <= 1 milliseconds
    93.24% <= 2 milliseconds
    99.83% <= 3 milliseconds
    100.00% <= 3 milliseconds
    30303.03 requests per second
    
    ====== LRANGE_300 (first 300 elements) ======
      10000 requests completed in 0.85 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    2.65% <= 1 milliseconds
    23.01% <= 2 milliseconds
    53.33% <= 3 milliseconds
    77.25% <= 4 milliseconds
    91.47% <= 5 milliseconds
    98.58% <= 6 milliseconds
    99.99% <= 7 milliseconds
    100.00% <= 7 milliseconds
    11764.71 requests per second
    
    ====== LRANGE_500 (first 450 elements) ======
      10000 requests completed in 1.22 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    1.01% <= 1 milliseconds
    9.09% <= 2 milliseconds
    28.25% <= 3 milliseconds
    50.31% <= 4 milliseconds
    68.06% <= 5 milliseconds
    81.18% <= 6 milliseconds
    90.78% <= 7 milliseconds
    96.96% <= 8 milliseconds
    99.43% <= 9 milliseconds
    100.00% <= 9 milliseconds
    8196.72 requests per second
    
    ====== LRANGE_600 (first 600 elements) ======
      10000 requests completed in 1.57 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    0.61% <= 1 milliseconds
    4.90% <= 2 milliseconds
    14.77% <= 3 milliseconds
    28.67% <= 4 milliseconds
    44.56% <= 5 milliseconds
    59.45% <= 6 milliseconds
    72.38% <= 7 milliseconds
    82.29% <= 8 milliseconds
    90.01% <= 9 milliseconds
    95.42% <= 10 milliseconds
    98.34% <= 11 milliseconds
    99.78% <= 12 milliseconds
    100.00% <= 12 milliseconds
    6357.28 requests per second
    
    ====== MSET (10 keys) ======
      10000 requests completed in 0.19 seconds
      50 parallel clients
      3 bytes payload
      keep alive: 1
    
    68.40% <= 1 milliseconds
    98.61% <= 2 milliseconds
    100.00% <= 3 milliseconds
    53763.44 requests per second
    
    
    [root@localhost toutou]# 

    vredis-cli

    2.1 简介

    查看redis的连接及读写操作

    2.2 命令格式

    redis-cli -h xx -p yy monitor

    2.3 实例:

    Redis监控工具

    2.4 redis-cli info:

    Redis 监控最直接的方法就是使用系统提供的 info 命令,只需要执行下面一条命令,就能获得 Redis 系统的状态报告。

    # Server
    redis_version:5.0.2                    # Redis 的版本
    redis_git_sha1:00000000
    redis_git_dirty:0
    redis_build_id:bf5d1747be5380f
    redis_mode:standalone
    os:Linux 2.6.32-220.7.1.el6.x86_64 x86_64
    arch_bits:64
    multiplexing_api:epoll
    gcc_version:4.4.7                       #gcc版本
    process_id:49324                        # 当前 Redis 服务器进程id
    run_id:bbd7b17efcf108fdde285d8987e50392f6a38f48
    tcp_port:6379
    uptime_in_seconds:1739082               # 运行时间(秒)
    uptime_in_days:20                       # 运行时间(天)
    hz:10
    lru_clock:1734729
    config_file:/home/s/apps/RedisMulti_video_so/conf/zzz.conf
     
    # Clients
    connected_clients:1                     #连接的客户端数量
    client_longest_output_list:0
    client_biggest_input_buf:0
    blocked_clients:0
     
    # Memory
    used_memory:821848                       #Redis分配的内存总量             
    used_memory_human:802.59K
    used_memory_rss:85532672                 #Redis分配的内存总量(包括内存碎片)
    used_memory_peak:178987632
    used_memory_peak_human:170.70M           #Redis所用内存的高峰值
    used_memory_lua:33792
    mem_fragmentation_ratio:104.07           #内存碎片比率
    mem_allocator:tcmalloc-2.0
     
    # Persistence
    loading:0
    rdb_changes_since_last_save:0            #上次保存数据库之后,执行命令的次数
    rdb_bgsave_in_progress:0                 #后台进行中的 save 操作的数量
    rdb_last_save_time:1410848505            #最后一次成功保存的时间点,以 UNIX 时间戳格式显示
    rdb_last_bgsave_status:ok
    rdb_last_bgsave_time_sec:0
    rdb_current_bgsave_time_sec:-1
    aof_enabled:0                            #redis是否开启了aof
    aof_rewrite_in_progress:0
    aof_rewrite_scheduled:0
    aof_last_rewrite_time_sec:-1
    aof_current_rewrite_time_sec:-1
    aof_last_bgrewrite_status:ok
    aof_last_write_status:ok
     
    # Stats
    total_connections_received:5705          #运行以来连接过的客户端的总数量
    total_commands_processed:204013          # 运行以来执行过的命令的总数量
    instantaneous_ops_per_sec:0
    rejected_connections:0
    sync_full:0
    sync_partial_ok:0
    sync_partial_err:0
    expired_keys:34401                       #运行以来过期的 key 的数量
    evicted_keys:0                           #运行以来删除过的key的数量
    keyspace_hits:2129                       #命中key 的次数
    keyspace_misses:3148                     #没命中key 的次数
    pubsub_channels:0                        #当前使用中的频道数量
    pubsub_patterns:0                        #当前使用中的模式数量
    latest_fork_usec:4391
     
    # Replication
    role:master                              #当前实例的角色master还是slave
    connected_slaves:0
    master_repl_offset:0
    repl_backlog_active:0
    repl_backlog_size:1048576
    repl_backlog_first_byte_offset:0
    repl_backlog_histlen:0
     
    # CPU
    used_cpu_sys:1551.61
    used_cpu_user:1083.37
    used_cpu_sys_children:2.52
    used_cpu_user_children:16.79
     
    # Keyspace
    db0:keys=3,expires=0,avg_ttl=0             #各个数据库的 key 的数量,以及带有生存期的 key 的数量

    redis-cli info

    结果会返回 Server、Clients、Memory、Persistence、Stats、Replication、CPU、Keyspace 8个部分。从info大返回结果中提取相关信息,就可以达到有效监控的目的。

    vshowlog

    3.1 简介

    redis的slowlog是redis用于记录记录慢查询执行时间的日志系统。由于slowlog只保存在内存中,因此slowlog的效率很高,完全不用担心会影响到redis的性能。Slowlog是Redis从2.2.12版本引入的一条命令。

    3.2 命令格式

    在redis-cli中有关于slowlog的设置:

    CONFIG SET slowlog-log-slower-than 6000

    CONFIG SET slowlog-max-len 25

    3.3 实例:

    Redis监控工具


    上面介绍的都是关于Redis自带的命令化性能查询工具。下面介绍介绍一些第三方的Redis可视化性能监控工具。

    vRedisLive

    4.1 简介

    RedisLive是由Python编写的开源的图形化监控工具。核心服务部分只包括一个web服务和基于Redis自带的Info命令以及monitor命令的监控服务。支持多实例监控,监控信息可以使用redis存储和sqlite持久化存储。

    4.2 安装

    4.2.1 安装依赖环境

    RedisLive是由Python2.X编写的,所以最好使用Python2.7来运行RedisLive,在CentOS 7中预安装了Python2.7,但没有安装Python的包管理器pip。

    yum install epel-release
    sudo yum install python-pip
    pip install --upgrade pip
    pip install tornado
    pip install redis
    pip install python-dateutil

    4.2.2 安装RedisLive

    git clone https://github.com/nkrode/RedisLive.git

    4.2.3 修改配置文件redis-live.conf

    cd RedisLive/src

    //按照以下方式修改配置文件
    {
        "RedisServers":        
        [ 
            #在此处添加需要监控的redis实例
            {
                  "server": "127.0.0.1",                #redis监听地址,此处为本机
                  "port" : 6379,                        #redis端口号,可以通过lsof -i | grep redis-ser查看 redis-server端口号
                  "password" : "some-password"          #redis认证密码,如果没有可以删除该行,注意json格式
            }        
        ],
    
        "DataStoreType" : "redis",        #监控数据存储方案的配置,可选择redis或sqllite
        #用来存储监控数据的 Redis 实例
        "RedisStatsServer":    
        {
            "server" : "127.0.0.1",
            "port" : 6379,
            "password" : "some-password"
        },
        #监控数据持久化数据存储配置
        "SqliteStatsStore" :
        {
            "path":  "db/redislive.sqlite"    #redis数据文件
        }
    }

    redis-live.conf的配置可以参考redis-live.conf.example

    4.3 启动

    启动监控服务,每60秒监控一次

    ./redis-monitor.py --duration=60

    再次开启一个终端,进入/root/RedisLive/src目录,启动web服务

    ./redis-live.py

    4.4 效果图

    Redis监控工具

    vredis-faina

    5.1 简介

    5.1.1 背景

    redis-faina是由Instagram开发并开源的一个 Redis 查询分析小工具。Instagram团队曾经使用 PGFouine 来作为其PostgreSQL的查询分析工具,他们觉得Redis也需要一个类似的工具来进行query分析工作,于是开发了 redis-faina。

    5.1.1 概念

    redis-faina 是通过Redis的 MONITOR命令来实现的,通过对在Redis上执行的query进行监控,统计出一段时间的query特性。

    5.2 安装

    git clone https://github.com/facebookarchive/redis-faina.git

    5.3 命令介绍

    [root@localhost toutou]# cd redis-faina/
    [root@localhost redis-faina]# ls
    heroku-redistogo-faina.sh  LICENSE  README.md  redis-faina.py
    [root@localhost redis-faina]# ./redis-faina.py -h
    usage: redis-faina.py [-h] [--prefix-delimiter PREFIX_DELIMITER]
                          [--redis-version REDIS_VERSION]
                          [input]
    
    positional arguments:
      input                 File to parse; will read from stdin otherwise
    
    optional arguments:
      -h, --help            show this help message and exit
      --prefix-delimiter PREFIX_DELIMITER
                            String to split on for delimiting prefix and rest of
                            key
      --redis-version REDIS_VERSION
                            Version of the redis server being monitored
    [root@localhost redis-faina]# 

    其中 --prefix-delimiter 主要用于统计前缀的key的数据。

    可以通过 redis MONITOR 命令以及管道进行分析,例如:

    redis-cli -p 6379 MONITOR | head -n | ./redis-faina.py [options]

    或者

    redis-cli -p 6379 MONITOR > outfile.txt

    ./redis-faina.py ./outfile.txt

    Overall Stats
    ========================================
    Lines Processed     117773
    Commands/Sec        11483.44
    
    Top Prefixes
    ========================================
    friendlist          69945
    followedbycounter   25419
    followingcounter    10139
    recentcomments      3276
    queued              7
    
    Top Keys
    ========================================
    friendlist:zzz:1:2     534
    followingcount:zzz     227
    friendlist:zxz:1:2     167
    friendlist:xzz:1:2     165
    friendlist:yzz:1:2     160
    friendlist:gzz:1:2     160
    friendlist:zdz:1:2     160
    friendlist:zpz:1:2     156
    
    Top Commands
    ========================================
    SISMEMBER   59545
    HGET        27681
    HINCRBY     9413
    SMEMBERS    9254
    MULTI       3520
    EXEC        3520
    LPUSH       1620
    EXPIRE      1598
    
    Command Time (microsecs)
    ========================================
    Median      78.25
    75%         105.0
    90%         187.25
    99%         411.0
    
    Heaviest Commands (microsecs)
    ========================================
    SISMEMBER   5331651.0
    HGET        2618868.0
    HINCRBY     961192.5
    SMEMBERS    856817.5
    MULTI       311339.5
    SADD        54900.75
    SREM        40771.25
    EXEC        28678.5
    
    Slowest Calls
    ========================================
    3490.75     "SMEMBERS" "friendlist:zzz:1:2"
    2362.0      "SMEMBERS" "friendlist:xzz:1:3"
    2061.0      "SMEMBERS" "friendlist:zpz:1:2"
    1961.0      "SMEMBERS" "friendlist:yzz:1:2"
    1947.5      "SMEMBERS" "friendlist:zpz:1:2"
    1459.0      "SISMEMBER" "friendlist:hzz:1:2" "zzz"
    1416.25     "SMEMBERS" "friendlist:zhz:1:2"
    1389.75     "SISMEMBER" "friendlist:zzx:1:2" "zzz"

    v博客总结

    关于Redis的监控工具还有很多,这里就不一一列举了,下面给出其它几款优秀的Redis监控工具链接,感兴趣的可以看看。

    其他监控工具:


    作  者:请叫我头头哥
    出  处:http://www.cnblogs.com/toutou/
    关于作者:专注于基础平台的项目开发。如有问题或建议,请多多赐教!
    版权声明:本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接。
    特此声明:所有评论和私信都会在第一时间回复。也欢迎园子的大大们指正错误,共同进步。或者直接私信
    声援博主:如果您觉得文章对您有帮助,可以点击文章右下角推荐一下。您的鼓励是作者坚持原创和持续写作的最大动力!

  • 相关阅读:
    Quartz
    WebService
    JavaMail
    安装phpnow服务[Apache_pn]提示失败的解决方法
    idea安装激活
    csdn下载
    java解析json串常识
    Oracle错误——ORA-03113:通信通道的文件结尾
    SSM(Maven集成)
    SpringMVC的拦截器
  • 原文地址:https://www.cnblogs.com/toutou/p/redis_monitor.html
Copyright © 2011-2022 走看看