zoukankan      html  css  js  c++  java
  • 洛谷P3943 星空

    题目链接

    传送门

    solution

    挺考验思维的一道题,考场上猜了各种假贪心居然水过了32分
    考虑这道题目中困扰我们的地方:

    • 1.对区间取反
      容易想到用差分思想,\(p[i]\)维护第原序列第\(i-1\)个点状态与第\(i\)个点异或的结果,即可将区间\([l,r]\)取反转化为仅对\(p[l]\)\(p[r+1]\)取反
    • 2.有多种取反方式
      事实上,对一段区间\([l,r]\)取反,若\(p[l]\)\(p[r+1]\)均为1,那么它们都会变成0,相当于相互抵消,若其中一个是1,相当于将1移动到0的位置,(\(p[l]\)\(p[r-1]\)都是1的情况???)那么抵消任意2个0的最小步数,就是将他们移动到一起的最小步数,每个点所能移动到的距离,就是题目中给出的不同取反长度。于是我们可以\(O(n,m)\)求出任意1个1移动到任意位置需要的最小步数。于是题目就转化为了有若干个点,任意2个点之间可以花费一定代价相互抵消,问将所有节点抵消的最小代价。
    • 原序列中每一个1最多导致现在的问题中多出2个点,于是最多有16个点,状压DP即可

    code

    #include<bits/stdc++.h>
    using namespace std;
    const int N=80010;
    int n,k,m,t[N],b[N],dis[N],dp[N],p[N],cnt,sum;
    int main(){
    	scanf("%d%d%d",&n,&k,&m);
    	for(int i=1;i<=k;++i){
    		int x;scanf("%d",&x);
    		t[x]^=1;t[x+1]^=1;
    	} 
    	for(int i=1;i<=n+1;++i) if(t[i]) p[cnt++]=i;
    	sum=(1<<cnt);
    	for(int i=1;i<=m;++i) scanf("%d",&b[i]);
    	memset(dis,0x3f,sizeof(dis));dis[0]=0;
    	for(int i=1;i<=m;++i)
    		for(int j=b[i];j<=n;++j)
    			dis[j]=min(dis[j],dis[j-b[i]]+1);
    	for(int i=1;i<=m;++i)
    		for(int j=n-b[i];j>=0;--j) 
    			dis[j]=min(dis[j],dis[j+b[i]]+1);
    	memset(dp,0x3f,sizeof(dp));dp[0]=0;
    	for(int i=0;i<sum;++i)
    		for(int j=0;j<cnt;++j) if(!(i&(1<<j)))
    			for(int k=j+1;k<cnt;++k)
    				if(!(i&(1<<k))) dp[i^(1<<j)^(1<<k)]=min(dp[i^(1<<j)^(1<<k)],dp[i]+dis[p[k]-p[j]]);
    	printf("%d\n",dp[sum-1]);
    	return 0;
    }
    
  • 相关阅读:
    RMI、Hessian、Burlap、Httpinvoker、WebService的比较
    分布式事务(两阶段提交)模型详解
    CAP和BASE理论
    两阶段提交协议的异常处理
    到底什么是单元测试
    Fast Paxos 和 Paxos的区别
    Servlet和JSP生命周期概述
    Zookeeper和 Google Chubby对比分析
    优秀开源项目的svn地址
    Explain语法
  • 原文地址:https://www.cnblogs.com/tqxboomzero/p/13837054.html
Copyright © 2011-2022 走看看