zoukankan      html  css  js  c++  java
  • csuoj Nearest Sequence

    Description

            Do you remember the "Nearest Numbers"? Now here comes its brother:"Nearest Sequence".Given three sequences of char,tell me the length of the longest common subsequence of the three sequences.

    Input

            There are several test cases.For each test case,the first line gives you the first sequence,the second line gives you the second one and the third line gives you the third one.(the max length of each sequence is 100)

    Output

     

            For each test case,print only one integer :the length of the longest common subsequence of the three sequences.

    Sample Input

    abcd
    abdc
    dbca
    abcd
    cabd
    tsc

    Sample Output

    2
    1

    代码:

    #include<iostream>
    #include<string>
    using namespace std;
    string a,b,c;
    
    int dp[101][101][101];
    int main(){
        while(cin >> a >> b >> c){
            int x,y,z;
            x = a.size();
            y = b.size();
            z = c.size();
    //        cout << x << " " << y << " " << z << endl;
            dp[0][0][0] = 0;
            for(int i = 0;i <= x;i++){
                for(int j = 0;j <= y;j++)
                    dp[i][j][0] = 0;
            }
            for(int i = 0;i <= x;i++){
                for(int k = 0;k <= z;k++)
                    dp[i][0][k] = 0;
            }
            for(int j = 0;j <= y;j++){
                for(int k = 0;k <= z;k++)
                    dp[0][j][k] = 0;
            }
            for(int i = 1;i <= x;i++){
                for(int j = 1;j <= y;j++){
                    for(int k = 1;k <= z;k++){
    //                    cout << a[i - 1] << " " << b[j + 1] << " " << c[k + 1] << endl;
                        if(a[i - 1] == b[j - 1] && a[i - 1] == c[k - 1])
                            dp[i][j][k] = dp[i - 1][j - 1][k - 1] + 1;
                        else{
                            dp[i][j][k] = max(max(dp[i - 1][j][k],dp[i][j - 1][k]),max(dp[i - 1][j][k],dp[i][j][k - 1]));
                        }
    //                    cout << i << " " << j << " " << k << " " << dp[i][j][k] << endl;
                    }
                }
            }
            cout << dp[x][y][z] <<endl;
        }
        return 0;
    }
  • 相关阅读:
    linux下清空文件的几种方式以及对比
    远程桌面连接无法验证您希望连接的计算机的身份-mac连接远程桌面
    Linux配置临时IP和网关命令
    linux(centos、ubuntu)网卡配置文件不生效
    负载均衡
    Zookeeper基础使用机制原理
    高性能RPC框架选型
    事务隔离机制
    一致性协议Raft
    机器学习入门
  • 原文地址:https://www.cnblogs.com/tracy520/p/6974477.html
Copyright © 2011-2022 走看看