zoukankan      html  css  js  c++  java
  • 排序算法复杂度

    转自:http://blog.csdn.net/xiexievv/article/details/45795719

    计算机科学所使用的排序算法通常被分类为:

    • 计算的时间复杂度(最差、平均、和最好性能),依据列表(list)的大小(n)。一般而言,好的性能是O(n log n),且坏的性能是O(n2)。对于一个排序理想的性能是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要O(n logn)。
    • 存储器使用量(以及其他电脑资源的使用)
    • 稳定性:稳定排序算法会让原本有相等键值的纪录维持相对次序。也就是如果一个排序算法是稳定的,当有两个相等键值的纪录RS,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。
    • 依据排序的方法:插入、交换、选择、合并等等。

    稳定性

    当相等的元素是无法分辨的,比如像是整数,稳定性并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。

    (4, 1)  (3, 1)  (3, 7)(5, 6)
    

    在这个状况下,有可能产生两种不同的结果,一个是让相等键值的纪录维持相对的次序,而另外一个则没有:

    (3, 1)  (3, 7)  (4, 1)  (5, 6)  (維持次序)
    (3, 7)  (3, 1)  (4, 1)  (5, 6)  (次序被改變)
    

    不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地实现为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个对象间之比较,(比如上面的比较中加入第二个标准:第二个键值的大小)就会被决定使用在原先数据次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。

    排序算法列表

    在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。

    稳定的排序

    不稳定的排序

    • 选择排序(selection sort)—O(n2)
    • 希尔排序(shell sort)—O(n log2 n)如果使用最佳的现在版本
    • Clover排序算法(Clover sort)—O(n)期望时间,O(n^2/2)最坏情况
    • 梳排序— O(n log n)
    • 堆排序(heap sort)—O(n log n)
    • 平滑排序(smooth sort)— O(n log n)
    • 快速排序(quick sort)—O(n log n)期望时间, O(n2)最坏情况;对于大的、乱数列表一般相信是最快的已知排序
    • 内省排序(introsort)—O(n log n)
    • 耐心排序(patience sort)—O(n log n + k)最坏情况时间,需要额外的O(n + k)空间,也需要找到最长的递增子序列(longest increasing subsequence)

    不实用的排序

    • Bogo排序— O(n × n!),最坏的情况下期望时间为无穷。
    • Stupid排序—O(n3);递归版本需要O(n2)额外存储器
    • 珠排序(bead sort)— O(n) or O(√n),但需要特别的硬件
    • 煎饼排序—O(n),但需要特别的硬件
    • 臭皮匠排序(stooge sort)算法简单,但需要约n^2.7的时间

    平均时间复杂度

    平均时间复杂度由高到低为:

    说明:虽然完全逆序的情况下,快速排序会降到选择排序的速度,不过从概率角度来说(参考信息学理论,和概率学),不对算法做编程上优化时,快速排序的平均速度比堆排序要快一些。

    名称数据对象稳定性时间复杂度空间复杂度描述
    平均最坏
    冒泡排序 数组 O(n^2) O(1) (无序区,有序区)。从无序区通过交换找出最大元素放到有序区前端。
    选择排序 数组 O(n^2) O(1) (有序区,无序区)。在无序区里找一个最小的元素跟在有序区的后面。对数组:比较得多,换得少。
    链表
    插入排序 数组、链表 O(n^2) O(1) (有序区,无序区)。把无序区的第一个元素插入到有序区的合适的位置。对数组:比较得少,换得多。
    堆排序 数组  O(nlog n) O(1) (最大堆,有序区)。从堆顶把根卸出来放在有序区之前,再恢复堆。
    归并排序 数组  O(nlog n) O(n) +O(log n) ,如果不是从下到上 把数据分为两段,从两段中逐个选最小的元素移入新数据段的末尾。可从上到下或从下到上进行。
    链表  O(1)
    快速排序 数组 O(nlog n) O(n^2) O(log n) ,O(n) (小数,枢纽元,大数)。
    希尔排序 数组 O(nlog^2n) O(n^2) O(1) 每一轮按照事先决定的间隔进行插入排序,间隔会依次缩小,最后一次一定要是1。
       
    计数排序 数组、链表 O(n+m) O(n+m) 统计小于等于该元素值的元素的个数i,于是该元素就放在目标数组的索引i位(i≥0)。
    桶排序 数组、链表 O(n) O(m) 将值为i的元素放入i号桶,最后依次把桶里的元素倒出来。
    基数排序 数组、链表 O(k	imes n) O(n^2)   一种多关键字的排序算法,可用桶排序实现。
      • 均按从小到大排列
      • k代表数值中的"数位"个数
      • n代表数据规模
      • m代表数据的最大值减最小值
  • 相关阅读:
    TP框架的小知识
    执行sql语句的注意事项
    关于引用值的总结
    几道经典容易错的php面试题
    Smarty模板的学习_2
    Smarty模板的学习_1
    数据库的权限操作
    redhat与zlib兼容性问题?
    Ubuntu中Qt Creator无法启动调试
    ubuntu下安装chrome浏览器和flash插件
  • 原文地址:https://www.cnblogs.com/tracyhan/p/5474608.html
Copyright © 2011-2022 走看看