zoukankan      html  css  js  c++  java
  • NOIP模拟 candy

    题目描述

    一天,小 DD 决定买一些糖果。他决定在两家不同的商店中买糖果,来体验更多的口味。

    在每家商店中都有 nn 颗糖果,每颗糖果都有一个权值:愉悦度,代表小 DD 觉得这种糖果有多好吃。其中,第一家商店中的第 ii 颗糖果的愉悦度为 AiAi,而第二家商店中的第 ii 颗糖果的愉悦度为 BiBi。

    在每家商店买的糖果会被打包到一个袋子中(可以在一家商店什么都不买,此时认为这家商店的袋子为空)。小 DD 回家后,因为这两个袋子外观是一样的,所以他会从两个袋子中随机选择一个.,然后吃光里面的糖果。小 DD 定义一种买糖果的方案的愉悦度为:吃到的糖果的愉悦度之和最小可能值

    购买每颗糖果的花费均为 WW,小 DD 想要最大化:买糖果的愉悦度买糖果的花费之差(xx 与 yy 的差即为 xyx−y),请你帮他求出这个最大值。

    输入格式

    第一行两个空格隔开的整数 n,Wn,W,表示每家商店中的糖果数目以及每颗糖果的花费。

    第二行 nn 个空格隔开的整数 A1,A2,,AnA1,A2,⋯,An,表示第一家商店中的糖果的愉悦度。

    第三行 nn 个空格隔开的整数 B1,B2,,BnB1,B2,⋯,Bn,表示第二家商店中的糖果的愉悦度。

    保证输入的 {A}{A} 和 {B}{B} 均按照从小到大的顺序排列。

    输出格式

    输出一行一个整数,表示这个差值的最大值。

    样例输入 1

    4 10
    12 14 16 19
    14 15 20 37
    

    样例输出 1

    5
    

    样例解释 1

    最优方案为购买第一家商店中,愉悦度为 1616 和 1919 的两颗糖果,以及第二家商店中愉悦度为 3737 的糖果。

    如果选择第一家商店的袋子,那么愉悦度之和为 3535;如果选择第二家商店的袋子,那么愉悦度之和为 3737;因此这种购买方案的愉悦度为 min{35,37}=35min{35,37}=35。

    购买三颗糖果的代价为 3×10=303×10=30,所以差值为 3530=535−30=5。

    可以证明不存在更优的方案,所以答案为 55。

    样例输入 2 & 3 & 4 & 5

    见下发文件 ex_candy2.in/outex_candy3.in/outex_candy4.in/out 以及 ex_candy5.in/out

    样例数据

    数据规模与约定

    本题共 2020 个测试数据,每个测试数据 55 分。

    对于前 15%15% 的测试数据,n5n≤5;
    对于另 15%15% 的测试数据,n10n≤10;
    对于另 15%15% 的测试数据,n50n≤50;
    对于另 15%15% 的测试数据,n200n≤200;
    对于另 15%15% 的测试数据,n1000n≤1000;
    对于另 15%15% 的测试数据,n5000n≤5000;
    对于 100%100% 的测试数据,1n1051≤n≤105,1Ai,Bi,W1061≤Ai,Bi,W≤106。对于任意 1i<n1≤i<n,有 AiAi+1Ai≤Ai+1 且 BiBi+1Bi≤Bi+1。

    时间限制2s2s

    空间限制512MB

    做法:ans=max(min(q[i],p[i]),w*(i+j)),q,p分别表示a,b从大到小时的前缀和,我们可以枚举其中一个,然后二分另一个。

     1 #include <cstdio>
     2 #include <iostream>
     3 #include <cstring>
     4 #define N 100107
     5 #define LL long long
     6 #define rep(i,a,b) for(int i=a;i<=b;i++)
     7 using namespace std;
     8 int n,w,a[N],b[N];
     9 LL ans,qa[N],qb[N];
    10 
    11 inline int read(){
    12     int s=0;
    13     char ch=getchar();
    14     for(;ch<'0'||ch>'9';ch=getchar());
    15     for(;ch>='0'&&ch<='9';s=s*10+ch-'0',ch=getchar());
    16     return s;
    17 }
    18 
    19 inline LL max(LL a,LL b){
    20     return a>b?a:b;
    21 }
    22 
    23 inline LL min(LL a,LL b){
    24     return a<b?a:b;
    25 }
    26 
    27 void Init(){
    28     n=read();w=read();
    29     rep(i,1,n) a[i]=read();
    30     rep(i,1,n) b[i]=read();
    31     rep(i,1,n) qa[i]=qa[i-1]+a[n-i+1],qb[i]=qb[i-1]+b[n-i+1];
    32 }
    33 
    34 void Work(){
    35     rep(i,1,n){
    36         int l=1,r=n;
    37         while(l<r){
    38             int mid=(l+r)>>1;
    39             if (qb[mid]>=qa[i])    r=mid;
    40             else l=mid+1;
    41         }
    42         ans=max(min(qa[i],qb[l])-w*(i+l),ans);
    43     }
    44     rep(i,1,n){
    45         int l=1,r=n;
    46         while(l<r){
    47             int mid=(l+r)>>1;
    48             if (qa[mid]>=qb[i])    r=mid;
    49             else l=mid+1;
    50         }
    51         ans=max(min(qb[i],qa[l])-w*(i+l),ans);
    52     }
    53     printf("%lld",ans);
    54 }
    55 
    56 int main(){
    57     Init();
    58     Work();
    59 }
    View Code
  • 相关阅读:
    document.createElement在IE和Firefox下的差异
    css3:基础知识
    XMLTProcessor根据XSLT样式规则将节点转换为document对象
    Sql:查看数据库表和表结构的语句
    前端性能优化方法总结
    vue-resource 设置请求的参数以formData形式以及设置请求的过滤器
    vuex
    vue 随笔3
    vuex
    vue随笔2
  • 原文地址:https://www.cnblogs.com/traveller-ly/p/9852782.html
Copyright © 2011-2022 走看看