zoukankan      html  css  js  c++  java
  • python 中 date与str转化及date之间的运算

    python 中 date与str转化及date之间的运算

    str相关运算

    str转datetime

    import datetime
    
    str = "20180805"
    str2date = datetime.datetime.strptime(str,"%Y%m%d")  #字符串转化为date形式
    date2str=str2date.strftime("%Y%m%d") #date形式转化为str
    
    str = '2012-11-19'
    date_time = datetime.datetime.strptime(str,'%Y-%m-%d') #注意str的格式要与'%Y-%m-%d'相匹配。
    
    #因为import datetime,而 datetime下面还有一个 datetime,所以要引用它,就得用datetime.datetime
    #如果用 from datetime import datetime, 就可以写成datetime.strptime(str,"%Y%m%d")
    

    datetime转str

    date_time = datetime.datetime(2012,11,19,0,0)
    str = date_time.strftime('%Y-%m-%d')
    #得到:'2012-11-19'
    

    str转为timestamp (pandas里的日期时间数据格式)

    settle_date = '2021-06-02' 
    pd.to_datetime(settle_date) 直接将字符格式的日期,转化为timestamps格式
    

    datetime格式转为timestamps格式

    date0 = datetime.strptime(settle_date, "%Y-%m-%d")  #转为datetime格式
    date0 = pd.Timestamp(date0)  #datetime格式转为timestamps格式
    
    #或者:把一列datetime型数字转为timestamp
    date_col = pd.to_datetime(date_col) 
    

    timestamps转为datetime

    month_list =  pd.date_range('2020-01-01','2020-06-30',freq='M')
    
    DatetimeIndex(['2020-01-31', '2020-02-29', '2020-03-31', '2020-04-30',
                   '2020-05-31', '2020-06-30'],
                  dtype='datetime64[ns]', freq='M')
    
    list(month_list)
    Out: 
    [Timestamp('2020-01-31 00:00:00', freq='M'),
     Timestamp('2020-02-29 00:00:00', freq='M'),
     Timestamp('2020-03-31 00:00:00', freq='M'),
     Timestamp('2020-04-30 00:00:00', freq='M'),
     Timestamp('2020-05-31 00:00:00', freq='M'),
     Timestamp('2020-06-30 00:00:00', freq='M')]
    
    list(month_list.values)
    Out: 
    [numpy.datetime64('2020-01-31T00:00:00.000000000'),
     numpy.datetime64('2020-02-29T00:00:00.000000000'),
     numpy.datetime64('2020-03-31T00:00:00.000000000'),
     numpy.datetime64('2020-04-30T00:00:00.000000000'),
     numpy.datetime64('2020-05-31T00:00:00.000000000'),
     numpy.datetime64('2020-06-30T00:00:00.000000000')]
    
    list(month_list)[0]
    Out: Timestamp('2020-01-31 00:00:00', freq='M')
    
    list(month_list.values)[0]
    Out[: numpy.datetime64('2020-01-31T00:00:00.000000000')
    
    list(month_list)[0].date()
    Out: datetime.date(2020, 1, 31)
    

    timestamp类型的特性

    settle_date = '2021-06-02' 
    #方法一
    date0 = datetime.strptime(settle_date, "%Y-%m-%d")  #转为datetime格式
    date0 = pd.Timestamp(date0)  #datetime格式转为timestamps格式
    #方法二
    date0 = pd.to_datetime(settle_date) 直接将字符格式的日期,转化为timestamps格式
    
    date0
    Out: Timestamp('2021-06-02 00:00:00')
    
    print(date0)
    2021-06-02 00:00:00
    
    dir(date0)
    Out:
    ['asm8', 'astimezone', 'ceil', 'combine', 'ctime', 'date', 'day', 'day_name', 'day_of_week', 'day_of_year', 'dayofweek', 'dayofyear', 'days_in_month', 'daysinmonth', 'dst', 'floor', 
    'fold', 'freq', 'freqstr', 'fromisocalendar', 'fromisoformat', 'fromordinal', 'fromtimestamp', 'hour', 'is_leap_year', 'is_month_end', 'is_month_start', 'is_quarter_end', 'is_quarter_start',
     'is_year_end', 'is_year_start', 'isocalendar', 'isoformat', 'isoweekday', 'max', 'microsecond', 'min', 'minute', 'month', 'month_name', 'nanosecond', 'normalize', 'now', 'quarter', 
    'replace', 'resolution', 'round', 'second', 'strftime', 'strptime', 'time', 'timestamp', 'timetuple', 'timetz', 'to_datetime64', 'to_julian_date', 'to_numpy', 'to_period', 'to_pydatetime',
     'today', 'toordinal', 'tz', 'tz_convert', 'tz_localize', 'tzinfo', 'tzname', 'utcfromtimestamp', 'utcnow', 'utcoffset', 'utctimetuple', 'value', 'week', 'weekday', 'weekofyear', 'year']
    
    #其中常用的:
    date0.date()
    Out[0]: datetime.date(2021, 6, 2)
    
    date0.day_name()
    Out[1]: 'Wednesday'
    
    date0.year
    Out[2]: 2021
    
    date0.month_name()
    Out[3]: 'June'
    
    date0.week
    Out[4]: 22
    
    date0.today()
    Out[5]: Timestamp('2021-06-03 10:53:14.977925')
    
    date0.to_datetime64()
    Out[6]: numpy.datetime64('2021-06-02T00:00:00.000000000')
    
    date0.isocalendar()
    Out[7]: (2021, 22, 3)
    
    date0.to_julian_date()
    Out[8]: 2459367.5
    
    date0.value
    Out[9]: 1622592000000000000
    
    date0.to_pydatetime()
    Out[10]: datetime.datetime(2021, 6, 2, 0, 0)
    
    date0.isoformat()
    Out[11]: '2021-06-02T00:00:00'
    
    date0.is_month_end
    Out[12]: False
    
    date0.is_leap_year
    Out[11]: False
    

    datetime运算

    date与datetime互转

    from datetime import datetime, date
    
    # 获取datetime
    now = datetime.now()
    
    # 获取date
    today = date.today()
    
    # date 转 datetime
    print('date 转 datetime:',datetime.combine(today, datetime.min.time()))
    
    # datetime转date
    print('datetime转date:',now.date())
    

    date之间的运算

    pre_date = date + datetime.datetime.timedelta(days=-1)
    

    两个日期的计算

    d1=datetime.datetime.strptime(starttime,"%Y%m%d")
    d2=datetime.datetime.strptime(endtime,"%Y%m%d")
    diff_days=d1-d2
    print diff_days
    

    有需要的直接?️复制下列代码

    #!/usr/bin/env python
    #-*-coding:utf-8
    # author zhaoli
    
    import datetime
    import time
    
    
    def str2date(str,date_format="%Y%m%d"):
        date = datetime.datetime.strptime(str, date_format)
        return date
    
    def date2str(date,date_formate = "%Y%m%d"):
        str = date.strftime(date_formate)
        return str
    
    def date_delta(date,gap,formate = "%Y%m%d"):
        date = str2date(date)
        pre_date = date + datetime.timedelta(days=-gap)
        pre_str = date2str(pre_date,formate)  # date形式转化为str
        return pre_str
    
    def str2timestamp(str,timestamp_len=10):
        date_array = time.strptime(str,"%Y-%m-%d %H:%M:%S")
        timestamp = int(time.mktime(date_array))
        if timestamp_len==13:
            timestamp *=1000
        return timestamp
    
    
  • 相关阅读:
    树上点对统计poj1741(树的点分治)
    hdu5115(区间dp)
    bestcoder Round#52 1001(最短路+状压dp)
    lightoj1038(期望dp)
    模线性方程组
    hdu2089 数位dp
    poj2955括号匹配 区间DP
    poj1417 带权并查集 + 背包 + 记录路径
    poj1984 带权并查集(向量处理)
    zoj3261 并查集离线处理
  • 原文地址:https://www.cnblogs.com/treasury-manager/p/13885947.html
Copyright © 2011-2022 走看看