zoukankan      html  css  js  c++  java
  • python的日期运算

    日期获取

    获取当前日期

    import datetime
     
    # 获取今天(现在时间)
    today = datetime.datetime.today()
    # 昨天
    yesterday = today - datetime.timedelta(days=1)
    # 明天
    tomorrow = today + datetime.timedelta(days=1)
    
    

    Python获取当前年/月/日

    import datetime
    datetime.datetime.now().year
    datetime.datetime.now().month
    datetime.datetime.now().day
    

    从0.15.0开始(2014年9月底发布),现在可以使用新的.dt访问器进行以下操作:

    df['Year'] = df['Date'].dt.year
    df['Month'] = df['Date'].dt.month
    df['Day'] = df['Date'].dt.day
    

    pandas读取excel文件时指定列的格式

    import pandas as pd
    file_name ='RB30A1.xlsx'
    jsh_list =pd.read_excel(file_name, dtype={'交易编号':str,'交易日期':'datetime64'},header =2)
    

    dt.strftime 获取年月日字符型数据

    对于datetime64[ns]类型的数据,可以直接用dt.strftime提取;如果是object数据类型,则要先用pd.to_datetime()转换一下,例如:

    pd.to_datetime(df.日期).dt.strftime('%Y-%m-%d')
    Out[1]: 
    20       2020-12-07
    21       2020-12-07
    22       2020-12-07
    23       2020-12-07
    24       2020-12-07
    ...
    Name: 转贴日期, Length: 3723, dtype: object
    
    pd.to_datetime(df.日期).dt.strftime('%Y%m')
    Out[2]: 
    20       202012
    21       202012
    22       202012
    23       202012
    24       202012
    
    #以下是手工转的方式:
    f = lambda x: str(x)[0:7]   #设置规则,把日期列转为str再提取前8个字符,即年和月
    df['YM'] = df.日期.apply(f)  #插入一列
    
    pd.to_datetime(df.日期).dt.strftime('%Y/%m/%d')
    Out[3]: 
    20       2020/12/07
    21       2020/12/07
    22       2020/12/07
    23       2020/12/07
    24       2020/12/07
       
    

    dt还有其它用法,比如,dt.year,dt.month,dt.day,dt.hour,dt.time,dt.quarter,dt.weekday,dt.dayofyear ... 结尾没有()

    日期计算

    在当前日期上加一天

    tom = today + datetime.timedelta(days=1)
    tom
    Out[2]: datetime.date(2020, 11, 3)
    

    指定两日,计算差

    from datetime import datetime
    cur_day = datetime(2019, 7, 30)
    next_day = datetime(2019, 7, 31)
    print((next_day - cur_day).days) 
    

    pandas 两列日期(object)相减求期限

    #两列日期相减,得到天数的数字
    df['tenor'] = ((df['date_maturity'])-df['date_discount']).dt.days  #不用dt.days计算出来的结果是timedelta64[ns]类型,加上dt.days就是数值型int64
    
    #两日期相减,再用astype方法把天数换成年
    df['days'] = df['date_maturity'])-df['date_discount']
    df['years'] = df['days'].astype('timedelta64[Y]')
    
    #麻烦一点的,先用to_datetime把该列转为日期
    df['new_tenor'] = (pd.to_datetime(df['date_maturity'])-pd.to_datetime(df['date_discount'])).dt.days + df['adjust_day']
    #一列日期和一个固定日期相减
    import time,datetime
    date_query= datetime.date.today()
    df['tenor'] = ((df['date_maturity'])-date_query).dt.days
    

    日期生成

    Pandas时间序列:生成指定范围的日期

    pandas.date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=None, **kwargs)
    https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.date_range.html

    import pandas as pd
    pd.date_range('11/1/2018','11/9/2018')
    

    从指定日期生成指定天数的日期序列

    import pandas as pd
    import numpy as np
    print pd.date_range(end='11/1/2018',periods=7)
    

    以每月最后一个工作日为周期

    import pandas as pd
    print pd.date_range('1/1/2018','12/1/2018',freq='BM')
    

    日期格式转换

    numpy.datetime64 转为 pandas的日期格式

    bond_dates =
    array(['2012-09-10T00:00:00.000000000', '2013-01-11T00:00:00.000000000',
           '2013-02-08T00:00:00.000000000', '2013-03-18T00:00:00.000000000',
           '2014-06-01T00:00:00.000000000', '2014-12-07T00:00:00.000000000',
           '2015-04-25T00:00:00.000000000', '2015-12-02T00:00:00.000000000',
           '2016-02-16T00:00:00.000000000', '2016-06-08T00:00:00.000000000',
           '2016-10-19T00:00:00.000000000', '2017-02-15T00:00:00.000000000',
           '2017-07-21T00:00:00.000000000', '2018-01-27T00:00:00.000000000',
           '2018-07-06T00:00:00.000000000', '2018-10-12T00:00:00.000000000',
           '2019-03-07T00:00:00.000000000', '2020-05-12T00:00:00.000000000',
           '2020-06-24T00:00:00.000000000', '2021-01-19T00:00:00.000000000',
           '2021-03-16T00:00:00.000000000', '2021-06-16T00:00:00.000000000',
           '2021-08-18T00:00:00.000000000', '2021-11-17T00:00:00.000000000',
           '2022-02-23T00:00:00.000000000'], dtype='datetime64[ns]')
    
    

    这种日期太长, 怎么转短一些?

    import pandas as pd
    pd_dates = pd.to_datetime(bond_dates)
    #得到:
    pd_dates
    Out[1]: 
    DatetimeIndex(['2012-09-10', '2013-01-11', '2013-02-08', '2013-03-18',
                   '2014-06-01', '2014-12-07', '2015-04-25', '2015-12-02',
                   '2016-02-16', '2016-06-08', '2016-10-19', '2017-02-15',
                   '2017-07-21', '2018-01-27', '2018-07-06', '2018-10-12',
                   '2019-03-07', '2020-05-12', '2020-06-24', '2021-01-19',
                   '2021-03-16', '2021-06-16', '2021-08-18', '2021-11-17',
                   '2022-02-23'],
                  dtype='datetime64[ns]', freq=None)
    

    python datetime 和 Quantlib 里的datetime的转换

    import QuantLib as ql
    from datetime import datetime,date,timedelta
    today = (date.today() + timedelta(days = 0)).strftime("%Y-%m-%d")       #可以通过调节days = 正负天数,来得到自今日起的日期位移
    Today = ql.Date(today,'%Y-%m-%d')
    

    datetime.datetime转为datetime.date

    from datetime import datetime,date
    today = date.today()
    #today: datetime.date(2020, 12, 24)
    
    date_valuation = '2020-12-22'    #str
    date_value = datetime.strptime(date_valuation,"%Y-%m-%d")      #类型是:datetime.datetime(2020, 12, 22, 0, 0)
    date_value = datetime.strptime(date_valuation,"%Y-%m-%d").date()      #type: datetime.date(2020, 12, 22)
    

    强行把一列转化为日期格式(在原dataframe里已改变)

    #针对'2020-01-01' 这种str有效, 以下两句等效
    dataframe.column_name.astype('datetime64[ns]')  
    df.column_name = pd.to_datetime(df.column_name)
    

    把一列长日期转换为短日期:

    #bond_sql.deal_time:
    
    0     2018-04-09 14:34:41
    1     2018-04-10 14:23:56
    2     2018-04-16 09:53:42
    3     2018-04-23 14:21:50
    4     2018-05-07 13:57:13
    
    from datetime import datetime
    bond_sql.deal_time = list(map(lambda t: datetime.date(t),bond_sql.deal_time))
    

    如果直接用import datetime,则上面的datetime.date(t)要写成:datetime.datetime.date(t)

    0      2018-04-09
    1      2018-04-10
    2      2018-04-16
    3      2018-04-23
    4      2018-05-07
    

    另外一种情况,源表中的8位数字的日期20170110转为 2017-01-10的日期格式 :

    data_list.日期
    0      20170110
    1      20170111
    2      20170112
    3      20170113
    4      20170119
    Name: 日期, Length: 5, dtype: object
    
    pd.to_datetime(data_list.日期,format='%Y%m%d')
    Out: 
    0     2017-01-10
    1     2017-01-11
    2     2017-01-12
    3     2017-01-13
    4     2017-01-19
    Name: 日期, Length: 5, dtype: datetime64[ns]
    #赋值:
    data_list.日期 = pd.to_datetime(data_list.日期,format='%Y%m%d')
    

    把一个字符串转化为日期格式

    import datetime
    deal_date = '2021/01/05'
    t1=datetime.datetime.strptime(deal_date,'%Y/%m/%d')
    #Out: datetime.datetime(2021, 1, 5, 0, 0)
    
    t1=datetime.datetime.strptime(deal_date,'%Y/%m/%d').date()
    #Out: datetime.date(2021, 1, 5)
    

    Calendar模块获取某月日历

    Calendar模块有很广泛的方法用来处理年历和月历,例如打印某月的月历:

    import calendar
    cal = calendar.month(2016, 1)
    print "以下输出2016年1月份的日历:"
    print cal
    

    以上实例输出结果:

    以下输出2016年1月份的日历:

    January 2016
    

    Mo Tu We Th Fr Sa Su
    1 2 3
    4 5 6 7 8 9 10
    11 12 13 14 15 16 17
    18 19 20 21 22 23 24
    25 26 27 28 29 30 31

    参考资料:

    计算两个日期间隔年月日(带闰年判断)
    日期天数差计算(Python)
    利用Python中的pandas(date_range)库生成时间序列(time series)
    https://www.cnblogs.com/OliverQin/p/12283897.html
    获取中国日历
    https://www.pypandas.cn/docs/user_guide/timeseries.html#时间戳-vs-时间段
    https://www.cnblogs.com/lemonbit/p/6896499.html

  • 相关阅读:
    因安装包依赖问题导致无法安装的解决办法!
    Ubuntu18.04安装qemu遇到问题-qemu : Depends: qemu-system (>= 1:2.11+dfsg-1ubuntu7)
    理解mount -t proc proc /proc
    printf "%.*s"
    Linux 内核内存分配函数devm_kmalloc()和devm_kzalloc()
    为什么 extern 使用 const 修饰的变量会编译不过?
    php openssl_sign 对应 C#版 RSA签名
    win7中用iis部署ssl服务
    找出windows系统上最大的文件
    windows 创建指定大小文件
  • 原文地址:https://www.cnblogs.com/treasury-manager/p/13912870.html
Copyright © 2011-2022 走看看