zoukankan      html  css  js  c++  java
  • 大数据分析处理必备工具

    大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和展现的有力武器。

    一、大数据接入
      1、大数据接入
          已有数据接入、实时数据接入、文件数据接入、消息记录数据接入、文字数据接入、图片数据接入、视屏数据接入
      2、大数据接入技术
          Kafka、ActiveMQ、ZeroMQ、Flume、Sqoop、Socket(Mina、Netty)、ftp/sftp
    二、大数据存储
      1、大数据存储
          结构化数据存储、半结构化数据存储、非结构化数据存储
      2、大数据存储技术
          Hdfs、Hbase、Hive、S3、Kudu、MongoDB、Neo4J 、Redis、Alluxio(Tachyon)、Lucene、Solr、ElasticSearch
    三、数据分析挖掘
      1、大数据分析与挖掘
          离线分析、准实时分析、实时分析、图片识别、语音识别、机器学习
      2、大数据分析与挖掘技术
          MapReduce、Hive、Pig、Spark、Flink、Impala、Kylin、Tez、Akka、Storm、S4、Mahout、MLlib
          数据的分析离不开各种数据库客户端工具,例如P/L SQL, 查询分析器,Navicat, shell等,客户端工具繁多,安装繁琐,
          使用基于Web的TreeSoft数据库管理系统,可以同时连接MySQL,Oracle,DB2,PostgreSQL, SQL Server, MongoDB, Hive, SAP HANA 十分方便。
          使用基于Web的工具有个好处是:一次布署,到处使用,省时省力。

    四、大数据共享交换
       1、大数据共享交换
          数据接入、数据清洗、转换、脱敏、脱密、数据资产管理、数据导出
          数据接入后,通常是存入数据库中,以便于进行分析、清洗、转换、脱敏等处理,而这些操作都离不开数据可视化客户端工具。
          海量大数据需分批次,分任务,分时段进行处理,TreeSoft数据库管理系统提供了数据定时任务管理,数据交换同步任务管理,
          任务统一管理,执行进度展示,处理日志查看等,十分强大,是大数据处理的好工具。

      2、大数据共享交换技术
          Kafka、ActiveMQ、ZeroMQ、Dubbo、Socket(Mina、Netty)、ftp/sftp、RestFul、Web Service


    五、大数据展现
       1、大数据展现
          图化展示(散点图、折线图、柱状图、地图、饼图、雷达图、K线图、箱线图、热力图、关系图、矩形树图、平行坐标、桑基图、漏斗图、仪表盘),文字展示;
    2、大数据展现技术
          Echarts、Tableau,TreeSoft数据库管理系统将SQL查询结果直接以图表展示,快速展现分析结果。

  • 相关阅读:
    修改Linux中的用户名
    阿里云服务器安全设置
    【solr专题之二】配置文件:solr.xml solrConfig.xml schema.xml
    【solr专题之四】关于VelocityResponseWriter
    django概述
    从烙铁手到IT男
    docker安装
    redhat之数据挖掘R语言软件及rstudio-server服务的安装
    分享一下 aix安装python提示C编译器问题的办法
    Android 播放Gif 动画
  • 原文地址:https://www.cnblogs.com/treesoft/p/10165453.html
Copyright © 2011-2022 走看看