zoukankan      html  css  js  c++  java
  • 吴裕雄 数据挖掘与分析案例实战(14)——Kmeans聚类分析

    # 导入第三方包
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.cluster import KMeans
    from sklearn import metrics

    # 随机生成三组二元正态分布随机数
    np.random.seed(1234)
    mean1 = [0.5, 0.5]
    cov1 = [[0.3, 0], [0, 0.3]]
    x1, y1 = np.random.multivariate_normal(mean1, cov1, 1000).T
    print(x1.shape)
    print(y1.shape)
    mean2 = [0, 8]
    cov2 = [[1.5, 0], [0, 1]]
    x2, y2 = np.random.multivariate_normal(mean2, cov2, 1000).T
    mean3 = [8, 4]
    cov3 = [[1.5, 0], [0, 1]]
    x3, y3 = np.random.multivariate_normal(mean3, cov3, 1000).T
    # 绘制三组数据的散点图
    plt.scatter(x1,y1)
    plt.scatter(x2,y2)
    plt.scatter(x3,y3)
    # 显示图形
    plt.show()

    # 构造自定义函数,用于绘制不同k值和对应总的簇内离差平方和的折线图
    def k_SSE(X, clusters):
    # 选择连续的K种不同的值
    K = range(1,clusters+1)
    # 构建空列表用于存储总的簇内离差平方和
    TSSE = []
    for k in K:
    # 用于存储各个簇内离差平方和
    SSE = []
    kmeans = KMeans(n_clusters=k)
    kmeans.fit(X)
    # 返回簇标签
    labels = kmeans.labels_
    # 返回簇中心
    centers = kmeans.cluster_centers_
    # 计算各簇样本的离差平方和,并保存到列表中
    for label in set(labels):
    SSE.append(np.sum((X.loc[labels == label,]-centers[label,:])**2))
    # 计算总的簇内离差平方和
    TSSE.append(np.sum(SSE))

    # 中文和负号的正常显示
    plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
    plt.rcParams['axes.unicode_minus'] = False
    # 设置绘图风格
    plt.style.use('ggplot')
    # 绘制K的个数与GSSE的关系
    plt.plot(K, TSSE, 'b*-')
    plt.xlabel('簇的个数')
    plt.ylabel('簇内离差平方和之和')
    # 显示图形
    plt.show()

    # 将三组数据集汇总到数据框中
    X = pd.DataFrame(np.concatenate([np.array([x1,y1]),np.array([x2,y2]),np.array([x3,y3])], axis = 1).T)
    print(X.shape)
    print(X.head())
    # 自定义函数的调用
    k_SSE(X, 15)

    # 构造自定义函数,用于绘制不同k值和对应轮廓系数的折线图
    def k_silhouette(X, clusters):
    K = range(2,clusters+1)
    # 构建空列表,用于存储个中簇数下的轮廓系数
    S = []
    for k in K:
    kmeans = KMeans(n_clusters=k)
    kmeans.fit(X)
    labels = kmeans.labels_
    # 调用字模块metrics中的silhouette_score函数,计算轮廓系数
    S.append(metrics.silhouette_score(X, labels, metric='euclidean'))

    # 中文和负号的正常显示
    plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
    plt.rcParams['axes.unicode_minus'] = False
    # 设置绘图风格
    plt.style.use('ggplot')
    # 绘制K的个数与轮廓系数的关系
    plt.plot(K, S, 'b*-')
    plt.xlabel('簇的个数')
    plt.ylabel('轮廓系数')
    # 显示图形
    plt.show()

    # 自定义函数的调用
    k_silhouette(X, 15)

    # 自定义函数,计算簇内任意两样本之间的欧氏距离
    def short_pair_wise_D(each_cluster):
    mu = each_cluster.mean(axis = 0)
    Dk = sum(sum((each_cluster - mu)**2)) * 2.0 * each_cluster.shape[0]
    return Dk

    # 计算簇内的Wk值
    def compute_Wk(data, classfication_result):
    Wk = 0
    label_set = set(classfication_result)
    for label in label_set:
    each_cluster = data[classfication_result == label, :]
    Wk = Wk + short_pair_wise_D(each_cluster)/(2.0*each_cluster.shape[0])
    return Wk

    # 计算GAP统计量
    def gap_statistic(X, B=10, K=range(1,11), N_init = 10):
    # 将输入数据集转换为数组
    X = np.array(X)
    # 生成B组参照数据
    shape = X.shape
    tops = X.max(axis=0)
    bots = X.min(axis=0)
    dists = np.matrix(np.diag(tops-bots))
    rands = np.random.random_sample(size=(B,shape[0],shape[1]))
    for i in range(B):
    rands[i,:,:] = rands[i,:,:]*dists+bots

    # 自定义0元素的数组,用于存储gaps、Wks和Wkbs
    gaps = np.zeros(len(K))
    Wks = np.zeros(len(K))
    Wkbs = np.zeros((len(K),B))
    # 循环不同的k值,
    for idxk, k in enumerate(K):
    k_means = KMeans(n_clusters=k)
    k_means.fit(X)
    classfication_result = k_means.labels_
    # 将所有簇内的Wk存储起来
    Wks[idxk] = compute_Wk(X,classfication_result)

    # 通过循环,计算每一个参照数据集下的各簇Wk值
    for i in range(B):
    Xb = rands[i,:,:]
    k_means.fit(Xb)
    classfication_result_b = k_means.labels_
    Wkbs[idxk,i] = compute_Wk(Xb,classfication_result_b)

    # 计算gaps、sd_ks、sk和gapDiff
    gaps = (np.log(Wkbs)).mean(axis = 1) - np.log(Wks)
    sd_ks = np.std(np.log(Wkbs), axis=1)
    sk = sd_ks*np.sqrt(1+1.0/B)
    # 用于判别最佳k的标准,当gapDiff首次为正时,对应的k即为目标值
    gapDiff = gaps[:-1] - gaps[1:] + sk[1:]

    # 中文和负号的正常显示
    plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
    plt.rcParams['axes.unicode_minus'] = False
    # 设置绘图风格
    plt.style.use('ggplot')
    # 绘制gapDiff的条形图
    plt.bar(np.arange(len(gapDiff))+1, gapDiff, color = 'steelblue')
    plt.xlabel('簇的个数')
    plt.ylabel('k的选择标准')
    plt.show()

    # 自定义函数的调用
    gap_statistic(X)

    # 读取iris数据集
    iris = pd.read_csv(r'F:\python_Data_analysis_and_mining\15\iris.csv')
    # 查看数据集的前几行
    print(iris.head())
    # 提取出用于建模的数据集X
    X = iris.drop(labels = 'Species', axis = 1)
    # 构建Kmeans模型
    kmeans = KMeans(n_clusters = 3)
    kmeans.fit(X)
    # 聚类结果标签
    X['cluster'] = kmeans.labels_
    # 各类频数统计
    a = X.cluster.value_counts()
    print(a)

    # 导入第三方模块
    import seaborn as sns

    # 三个簇的簇中心
    centers = kmeans.cluster_centers_
    # 绘制聚类效果的散点图
    sns.lmplot(x = 'Petal_Length', y = 'Petal_Width', hue = 'cluster', markers = ['^','s','o'],
    data = X, fit_reg = False, scatter_kws = {'alpha':0.8}, legend_out = False)
    plt.scatter(centers[:,2], centers[:,3], marker = '*', color = 'black', s = 130)
    plt.xlabel('花瓣长度')
    plt.ylabel('花瓣宽度')
    # 图形显示
    plt.show()

    # 增加一个辅助列,将不同的花种映射到0,1,2三种值,目的方便后面图形的对比
    iris['Species_map'] = iris.Species.map({'virginica':0,'setosa':1,'versicolor':2})
    # 绘制原始数据三个类别的散点图
    sns.lmplot(x = 'Petal_Length', y = 'Petal_Width', hue = 'Species_map', data = iris, markers = ['^','s','o'],
    fit_reg = False, scatter_kws = {'alpha':0.8}, legend_out = False)
    plt.xlabel('花瓣长度')
    plt.ylabel('花瓣宽度')
    # 图形显示
    plt.show()

    # 导入第三方模块
    import pygal

    # 调用Radar这个类,并设置雷达图的填充,及数据范围
    radar_chart = pygal.Radar(fill = True)
    # 添加雷达图各顶点的名称
    radar_chart.x_labels = ['花萼长度','花萼宽度','花瓣长度','花瓣宽度']
    # 绘制三个雷达图区域,代表三个簇中心的指标值
    radar_chart.add('C1', centers[0])
    radar_chart.add('C2', centers[1])
    radar_chart.add('C3', centers[2])
    # 保存图像
    radar_chart.render_to_file('E:\radar_chart.svg')

    # 读取球员数据
    players = pd.read_csv(r'F:\python_Data_analysis_and_mining\15\players.csv')
    print(players.shape)
    print(players.head())
    # 绘制得分与命中率的散点图
    sns.lmplot(x = '得分', y = '命中率', data = players,
    fit_reg = False, scatter_kws = {'alpha':0.8, 'color': 'steelblue'})
    plt.show()

    from sklearn import preprocessing
    # 数据标准化处理
    X = preprocessing.minmax_scale(players[['得分','罚球命中率','命中率','三分命中率']])
    # 将数组转换为数据框
    X = pd.DataFrame(X, columns=['得分','罚球命中率','命中率','三分命中率'])
    # 使用拐点法选择最佳的K值
    k_SSE(X, 15)

    # 使用轮廓系数选择最佳的K值
    k_silhouette(X, 15)

    # 使用间隙统计量选择最佳的K值
    gap_statistic(X, B = 20, K=range(1, 16))

    # 将球员数据集聚为3类
    kmeans = KMeans(n_clusters = 3)
    kmeans.fit(X)
    # 将聚类结果标签插入到数据集players中
    players['cluster'] = kmeans.labels_
    # 构建空列表,用于存储三个簇的簇中心
    centers = []
    for i in players.cluster.unique():
    centers.append(players.ix[players.cluster == i,['得分','罚球命中率','命中率','三分命中率']].mean())
    # 将列表转换为数组,便于后面的索引取数
    centers = np.array(centers)
    # 绘制散点图
    sns.lmplot(x = '得分', y = '命中率', hue = 'cluster', data = players, markers = ['^','s','o'],
    fit_reg = False, scatter_kws = {'alpha':0.8}, legend = False)
    # 添加簇中心
    plt.scatter(centers[:,0], centers[:,2], c='k', marker = '*', s = 180)
    plt.xlabel('得分')
    plt.ylabel('命中率')
    # 图形显示
    plt.show()

    # 雷达图
    # 调用模型计算出来的簇中心
    centers_std = kmeans.cluster_centers_
    # 设置填充型雷达图
    radar_chart = pygal.Radar(fill = True)
    # 添加雷达图各顶点的名称
    radar_chart.x_labels = ['得分','罚球命中率','命中率','三分命中率']

    # 绘制雷达图代表三个簇中心的指标值
    radar_chart.add('C1', centers_std[0])
    radar_chart.add('C2', centers_std[1])
    radar_chart.add('C3', centers_std[2])
    # 保存图像
    radar_chart.render_to_file('E:\radar_chart01.svg')

  • 相关阅读:
    如何用kaldi做孤立词识别三
    如何用kaldi做孤立词识别二
    脚本注释3
    [转] kaldi中FST的可视化-以yesno为例
    如何用kaldi做孤立词识别-初版
    [转]语言模型训练工具SRILM
    [转]kaldi 神经网络
    [转]kaldi ASR: DNN训练
    [转]Kaldi命令词识别
    [转] 如何用kaldi训练好的模型做特定任务的在线识别
  • 原文地址:https://www.cnblogs.com/tszr/p/10061012.html
Copyright © 2011-2022 走看看