zoukankan      html  css  js  c++  java
  • 吴裕雄 python神经网络 手写数字图片识别(5)

    import keras
    import matplotlib.pyplot as plt
    from keras.models import Sequential
    from keras.layers import Dense,Activation,Flatten,Dropout,Convolution2D,MaxPooling2D
    from keras.utils import np_utils
    from keras.optimizers import RMSprop
    from skimage import io

    nb_classes=10
    batch_size=128
    ####因为是卷积神经网络,输入数据的格式是图像格式,所以要进行reshape
    train_X = io.imread("E:\WaySign\0_0_colorrgb0.ppm")
    train_x=np.reshape(train_X,(train_X.shape[0],32,32,1))
    # test_x=np.reshape(test_X,(test_X.shape[0],28,28,1))
    # train_y=np_utils.to_categorical(train_Y,nb_classes)
    # test_y=np_utils.to_categorical(test_Y,nb_classes)

    print(train_y.shape,' ',test_y.shape)

    print(train_x.shape,' ',test_x.shape)

    train_x[:,:,:,0].shape

    ###reshape后的数据显示
    import matplotlib.pyplot as plt
    %matplotlib inline
    f,a=plt.subplots(1,10,figsize=(10,5))
    for i in range(10):
    a[i].imshow(train_x[i,:,:,0],cmap='gray')
    print(train_Y[i])

    ####establish a convolution nerual network
    model=Sequential()

    ####Convolution layer 1
    model.add(Convolution2D(filters=32,kernel_size=(3,3),input_shape=(28,28,1),strides=(1,1),
    padding='same',activation='relu'))

    #####pooling layer with dropout
    model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
    model.add(Dropout(0.2))

    ####Convolution layer 2
    model.add(Convolution2D(filters=64,kernel_size=(3,3),strides=(1,1),padding='same',
    activation='relu'))
    model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
    model.add(Dropout(0.2))

    ####Convolution layer 3
    model.add(Convolution2D(filters=128,kernel_size=(3,3),strides=(1,1),padding='same',
    activation='relu'))
    model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
    model.add(Flatten())###理解扁平化
    model.add(Dropout(0.2))

    #model.add(Flatten())?

    ####fully connected layer 1 (fc layer)
    model.add(Dense(output_dim=625,activation='relu'))
    model.add(Dropout(0.5))

    ####fully connected layer 2 (fc layer)
    model.add(Dense(output_dim=10,activation='softmax'))
    model.summary()

    model.compile(optimizer=RMSprop(lr=0.001,rho=0.9),loss="categorical_crossentropy",
    metrics=['accuracy'])
    import time
    start_time=time.time()
    model.fit(train_x,train_y,epochs=30,batch_size=128,verbose=1)
    end_time=time.time()
    print("running time:%.2f"%(end_time-start_time))

    evaluation=model.evaluate(test_x,test_y,batch_size=128,verbose=1)
    print("model loss:%.4f"%(evaluation[0]),"model accuracy:%.4f"%(evaluation[1]))

    # https://github.com/fchollet/keras/issues/431
    def get_activations(model, model_inputs, print_shape_only=True, layer_name=None):
    import keras.backend as K
    print('----- activations -----')
    activations = []
    inp = model.input

    model_multi_inputs_cond = True
    if not isinstance(inp, list):
    # only one input! let's wrap it in a list.
    inp = [inp]
    model_multi_inputs_cond = False

    outputs = [layer.output for layer in model.layers if
    layer.name == layer_name or layer_name is None] # all layer outputs

    funcs = [K.function(inp + [K.learning_phase()], [out]) for out in outputs] # evaluation functions

    if model_multi_inputs_cond:
    list_inputs = []
    list_inputs.extend(model_inputs)
    list_inputs.append(1.)
    else:
    list_inputs = [model_inputs, 1.]

    # Learning phase. 1 = Test mode (no dropout or batch normalization)
    # layer_outputs = [func([model_inputs, 1.])[0] for func in funcs]
    layer_outputs = [func(list_inputs)[0] for func in funcs]
    for layer_activations in layer_outputs:
    activations.append(layer_activations)
    if print_shape_only:
    print(layer_activations.shape)
    else:
    print(layer_activations)
    return activations

    # https://github.com/philipperemy/keras-visualize-activations/blob/master/read_activations.py
    def display_activations(activation_maps):
    import numpy as np
    import matplotlib.pyplot as plt
    """
    (1, 28, 28, 32)
    (1, 14, 14, 32)
    (1, 14, 14, 32)
    (1, 14, 14, 64)
    (1, 7, 7, 64)
    (1, 7, 7, 64)
    (1, 7, 7, 128)
    (1, 3, 3, 128)
    (1, 1152)
    (1, 1152)
    (1, 625)
    (1, 625)
    (1, 10)
    """
    batch_size = activation_maps[0].shape[0]
    assert batch_size == 1, 'One image at a time to visualize.'
    for i, activation_map in enumerate(activation_maps):
    print('Displaying activation map {}'.format(i))
    shape = activation_map.shape
    if len(shape) == 4:
    activations = np.hstack(np.transpose(activation_map[0], (2, 0, 1)))
    elif len(shape) == 2:
    # try to make it square as much as possible. we can skip some activations.
    activations = activation_map[0]
    num_activations = len(activations)
    if num_activations > 1024: # too hard to display it on the screen.
    square_param = int(np.floor(np.sqrt(num_activations)))
    activations = activations[0: square_param * square_param]
    activations = np.reshape(activations, (square_param, square_param))
    else:
    activations = np.expand_dims(activations, axis=0)
    else:
    raise Exception('len(shape) = 3 has not been implemented.')
    #plt.imshow(activations, interpolation='None', cmap='binary')
    fig, ax = plt.subplots(figsize=(18, 12))
    ax.imshow(activations, interpolation='None', cmap='binary')
    plt.show()

    ###One image at a time to visualize.
    activations = get_activations(model, (test_x[0,:,:,:])[np.newaxis,:])

    (test_x[0,:,:,:])[np.newaxis,:].shape

    display_activations(activations)

    plt.imshow(test_x[0,:,:,0],cmap='gray')
    pred_value=model.predict_classes((test_x[0,:,:,:])[np.newaxis,:],batch_size=1)
    print(pred_value)

  • 相关阅读:
    IDEA 代码统计插件使用
    四种遍历ConcurrentHashMap的方式
    Java中多线程并发体系知识点汇总
    程序员高效工具列表
    js数组与字符串的相互转换方法
    ajax使用json数据格式--无效的 JSON 基元
    for和$.each 的记录
    表单提交模型记录
    /Date(1512551901709+0800)/转换
    jsonp的使用记录
  • 原文地址:https://www.cnblogs.com/tszr/p/10085348.html
Copyright © 2011-2022 走看看