zoukankan      html  css  js  c++  java
  • 吴裕雄 python 机器学习-NBYS(1)

    import numpy as np
    
    def loadDataSet():
        postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                     ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                     ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                     ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                     ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                     ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
        classVec = [0,1,0,1,0,1]    
        return postingList,classVec
    
    def createVocabList(dataSet):
        vocabSet = set([])  
        for document in dataSet:
            vocabSet = vocabSet | set(document) 
        return list(vocabSet)
    
    def setOfWords2Vec(vocabList, inputSet):
        returnVec = [0]*len(vocabList)
        for word in inputSet:
            if word in vocabList:
                returnVec[vocabList.index(word)] = 1
            else: 
                print("the word: %s is not in my Vocabulary!" % word)
        return returnVec
    
    def trainNB0(trainMatrix,trainCategory):
        numTrainDocs = len(trainMatrix)
        numWords = len(trainMatrix[0])
        pAbusive = sum(trainCategory)/float(numTrainDocs)
        p0Num = np.ones(numWords)
        p1Num = np.ones(numWords)      
        p0Denom = 2.0
        p1Denom = 2.0                        
        for i in range(numTrainDocs):
            if(trainCategory[i] == 1):
                p1Num += trainMatrix[i]
                p1Denom += sum(trainMatrix[i])
            else:
                p0Num += trainMatrix[i]
                p0Denom += sum(trainMatrix[i])
        p1Vect = np.log(p1Num/p1Denom)         
        p0Vect = np.log(p0Num/p0Denom)         
        return p0Vect,p1Vect,pAbusive
    
    def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
        p1 = sum(vec2Classify * p1Vec) + np.log(pClass1)    
        p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
        if p1 > p0:
            return 1
        else: 
            return 0
        
    def bagOfWords2VecMN(vocabList, inputSet):
        returnVec = [0]*len(vocabList)
        for word in inputSet:
            if(word in vocabList):
                returnVec[vocabList.index(word)] += 1
        return returnVec
    
    def testingNB():
        listOPosts,listClasses = loadDataSet()
        myVocabList = createVocabList(listOPosts)
        trainMat=[]
        for postinDoc in listOPosts:
            trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
        p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses))
        testEntry = ['love', 'my', 'dalmation']
        thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))
        print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
        testEntry = ['stupid', 'garbage']
        thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))
        print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
        
    testingNB()

    import re
    import numpy as np
    
    def createVocabList(dataSet):
        vocabSet = set([])  
        for document in dataSet:
            vocabSet = vocabSet | set(document) 
        return list(vocabSet)
    
    def bagOfWords2VecMN(vocabList, inputSet):
        returnVec = [0]*len(vocabList)
        for word in inputSet:
            if(word in vocabList):
                returnVec[vocabList.index(word)] += 1
        return returnVec
    
    def trainNB0(trainMatrix,trainCategory):
        numTrainDocs = len(trainMatrix)
        numWords = len(trainMatrix[0])
        pAbusive = sum(trainCategory)/float(numTrainDocs)
        p0Num = np.ones(numWords)
        p1Num = np.ones(numWords)      
        p0Denom = 2.0
        p1Denom = 2.0                        
        for i in range(numTrainDocs):
            if(trainCategory[i] == 1):
                p1Num += trainMatrix[i]
                p1Denom += sum(trainMatrix[i])
            else:
                p0Num += trainMatrix[i]
                p0Denom += sum(trainMatrix[i])
        p1Vect = np.log(p1Num/p1Denom)         
        p0Vect = np.log(p0Num/p0Denom)         
        return p0Vect,p1Vect,pAbusive
    
    def textParse(bigString):    
        listOfTokens = re.split(r'W*', bigString)
        return [tok.lower() for tok in listOfTokens if len(tok) > 2]
    
    def spamTest():
        docList=[]
        classList = []
        fullText =[]
        for i in range(1,26):
            wordList = textParse(open('D:\LearningResource\machinelearninginaction\Ch04\email\spam\%d.txt' % i).read())
            docList.append(wordList)
            fullText.extend(wordList)
            classList.append(1)
            wordList = textParse(open('D:\LearningResource\machinelearninginaction\Ch04\email\ham\%d.txt' % i).read())
            docList.append(wordList)
            fullText.extend(wordList)
            classList.append(0)
        vocabList = createVocabList(docList)
        trainingSet = list(np.arange(50))
        testSet=[]           
        for i in range(10):
            randIndex = int(np.random.uniform(0,len(trainingSet)))
            testSet.append(trainingSet[randIndex])
            del(trainingSet[randIndex])  
        trainMat=[]
        trainClasses = []
        for docIndex in trainingSet:
            trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
            trainClasses.append(classList[docIndex])
        p0V,p1V,pSpam = trainNB0(np.array(trainMat),np.array(trainClasses))
        errorCount = 0
        for docIndex in testSet:       
            wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
            if(classifyNB(np.array(wordVector),p0V,p1V,pSpam) != classList[docIndex]):
                errorCount += 1
                print("classification error",docList[docIndex])
        print('the error rate is: ',float(errorCount)/len(testSet))
        
    spamTest()

  • 相关阅读:
    ADO.NET FOR MySQL帮助类
    遍历文件夹及其子文件夹下的.pdf文件,并解压文件夹下所有的压缩包
    history.back();谷歌浏览器,iframe后退问题
    Request.url请求属性
    正则表达式 取两字符中间的字符串(双向非贪婪模式)
    MVC 项目中为什么会有两个web.config
    c#动态编译并动态生成dll
    siteserver cms选择栏目搜索无效
    jquery修改Switchery复选框的状态
    ntko office在线编辑控件问题记录
  • 原文地址:https://www.cnblogs.com/tszr/p/10174189.html
Copyright © 2011-2022 走看看