import numpy as np def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec = [0,1,0,1,0,1] return postingList,classVec def createVocabList(dataSet): vocabSet = set([]) for document in dataSet: vocabSet = vocabSet | set(document) return list(vocabSet) def setOfWords2Vec(vocabList, inputSet): returnVec = [0]*len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] = 1 else: print("the word: %s is not in my Vocabulary!" % word) return returnVec def trainNB0(trainMatrix,trainCategory): numTrainDocs = len(trainMatrix) numWords = len(trainMatrix[0]) pAbusive = sum(trainCategory)/float(numTrainDocs) p0Num = np.ones(numWords) p1Num = np.ones(numWords) p0Denom = 2.0 p1Denom = 2.0 for i in range(numTrainDocs): if(trainCategory[i] == 1): p1Num += trainMatrix[i] p1Denom += sum(trainMatrix[i]) else: p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) p1Vect = np.log(p1Num/p1Denom) p0Vect = np.log(p0Num/p0Denom) return p0Vect,p1Vect,pAbusive def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1): p1 = sum(vec2Classify * p1Vec) + np.log(pClass1) p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1) if p1 > p0: return 1 else: return 0 def bagOfWords2VecMN(vocabList, inputSet): returnVec = [0]*len(vocabList) for word in inputSet: if(word in vocabList): returnVec[vocabList.index(word)] += 1 return returnVec def testingNB(): listOPosts,listClasses = loadDataSet() myVocabList = createVocabList(listOPosts) trainMat=[] for postinDoc in listOPosts: trainMat.append(setOfWords2Vec(myVocabList, postinDoc)) p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses)) testEntry = ['love', 'my', 'dalmation'] thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry)) print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)) testEntry = ['stupid', 'garbage'] thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry)) print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)) testingNB()
import re import numpy as np def createVocabList(dataSet): vocabSet = set([]) for document in dataSet: vocabSet = vocabSet | set(document) return list(vocabSet) def bagOfWords2VecMN(vocabList, inputSet): returnVec = [0]*len(vocabList) for word in inputSet: if(word in vocabList): returnVec[vocabList.index(word)] += 1 return returnVec def trainNB0(trainMatrix,trainCategory): numTrainDocs = len(trainMatrix) numWords = len(trainMatrix[0]) pAbusive = sum(trainCategory)/float(numTrainDocs) p0Num = np.ones(numWords) p1Num = np.ones(numWords) p0Denom = 2.0 p1Denom = 2.0 for i in range(numTrainDocs): if(trainCategory[i] == 1): p1Num += trainMatrix[i] p1Denom += sum(trainMatrix[i]) else: p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) p1Vect = np.log(p1Num/p1Denom) p0Vect = np.log(p0Num/p0Denom) return p0Vect,p1Vect,pAbusive def textParse(bigString): listOfTokens = re.split(r'W*', bigString) return [tok.lower() for tok in listOfTokens if len(tok) > 2] def spamTest(): docList=[] classList = [] fullText =[] for i in range(1,26): wordList = textParse(open('D:\LearningResource\machinelearninginaction\Ch04\email\spam\%d.txt' % i).read()) docList.append(wordList) fullText.extend(wordList) classList.append(1) wordList = textParse(open('D:\LearningResource\machinelearninginaction\Ch04\email\ham\%d.txt' % i).read()) docList.append(wordList) fullText.extend(wordList) classList.append(0) vocabList = createVocabList(docList) trainingSet = list(np.arange(50)) testSet=[] for i in range(10): randIndex = int(np.random.uniform(0,len(trainingSet))) testSet.append(trainingSet[randIndex]) del(trainingSet[randIndex]) trainMat=[] trainClasses = [] for docIndex in trainingSet: trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex])) trainClasses.append(classList[docIndex]) p0V,p1V,pSpam = trainNB0(np.array(trainMat),np.array(trainClasses)) errorCount = 0 for docIndex in testSet: wordVector = bagOfWords2VecMN(vocabList, docList[docIndex]) if(classifyNB(np.array(wordVector),p0V,p1V,pSpam) != classList[docIndex]): errorCount += 1 print("classification error",docList[docIndex]) print('the error rate is: ',float(errorCount)/len(testSet)) spamTest()