zoukankan      html  css  js  c++  java
  • 吴裕雄 python 机器学习——伯努利贝叶斯BernoulliNB模型

    import numpy as np
    import  matplotlib.pyplot as plt
    
    from sklearn import datasets,naive_bayes
    from sklearn.model_selection import train_test_split
    
    # 加载 scikit-learn 自带的 digits 数据集
    def load_data():
        '''
        加载用于分类问题的数据集。这里使用 scikit-learn 自带的 digits 数据集
        '''
        digits=datasets.load_digits()
        return train_test_split(digits.data,digits.target,test_size=0.25,random_state=0,stratify=digits.target)
    
    #伯努利贝叶斯BernoulliNB模型
    def test_BernoulliNB(*data):
        X_train,X_test,y_train,y_test=data
        cls=naive_bayes.BernoulliNB()
        cls.fit(X_train,y_train)
        print('Training Score: %.2f' % cls.score(X_train,y_train))
        print('Testing Score: %.2f' % cls.score(X_test, y_test))
              
    # 产生用于分类问题的数据集
    X_train,X_test,y_train,y_test=load_data()
    # 调用 test_BernoulliNB
    test_BernoulliNB(X_train,X_test,y_train,y_test)

    def test_BernoulliNB_alpha(*data):
        '''
        测试 BernoulliNB 的预测性能随 alpha 参数的影响
        '''
        X_train,X_test,y_train,y_test=data
        alphas=np.logspace(-2,5,num=200)
        train_scores=[]
        test_scores=[]
        for alpha in alphas:
            cls=naive_bayes.BernoulliNB(alpha=alpha)
            cls.fit(X_train,y_train)
            train_scores.append(cls.score(X_train,y_train))
            test_scores.append(cls.score(X_test, y_test))
    
        ## 绘图
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        ax.plot(alphas,train_scores,label="Training Score")
        ax.plot(alphas,test_scores,label="Testing Score")
        ax.set_xlabel(r"$alpha$")
        ax.set_ylabel("score")
        ax.set_ylim(0,1.0)
        ax.set_title("BernoulliNB")
        ax.set_xscale("log")
        ax.legend(loc="best")
        plt.show()
        
    # 调用 test_BernoulliNB_alpha   
    test_BernoulliNB_alpha(X_train,X_test,y_train,y_test)

    def test_BernoulliNB_binarize(*data):
        '''
        测试 BernoulliNB 的预测性能随 binarize 参数的影响
        '''
        X_train,X_test,y_train,y_test=data
        min_x=min(np.min(X_train.ravel()),np.min(X_test.ravel()))-0.1
        max_x=max(np.max(X_train.ravel()),np.max(X_test.ravel()))+0.1
        binarizes=np.linspace(min_x,max_x,endpoint=True,num=100)
        train_scores=[]
        test_scores=[]
        for binarize in binarizes:
            cls=naive_bayes.BernoulliNB(binarize=binarize)
            cls.fit(X_train,y_train)
            train_scores.append(cls.score(X_train,y_train))
            test_scores.append(cls.score(X_test, y_test))
    
        ## 绘图
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        ax.plot(binarizes,train_scores,label="Training Score")
        ax.plot(binarizes,test_scores,label="Testing Score")
        ax.set_xlabel("binarize")
        ax.set_ylabel("score")
        ax.set_ylim(0,1.0)
        ax.set_xlim(min_x-1,max_x+1)
        ax.set_title("BernoulliNB")
        ax.legend(loc="best")
        plt.show()
        
    # 调用 test_BernoulliNB_binarize   
    test_BernoulliNB_binarize(X_train,X_test,y_train,y_test)

  • 相关阅读:
    团队开发第二阶段
    每日日报
    每日日报
    每日日报
    每日日报
    每日日报
    C++类class和结构体struct区别
    c++简单的类的建立与参数的两种传递方法
    C++ 使用delete删除指针
    暂存
  • 原文地址:https://www.cnblogs.com/tszr/p/10794239.html
Copyright © 2011-2022 走看看