zoukankan      html  css  js  c++  java
  • 吴裕雄 python 机器学习——模型选择分类问题性能度量

    import  numpy as np
    import  matplotlib.pyplot as plt
    
    from sklearn.svm import  SVC
    from sklearn.datasets import load_iris
    from sklearn.preprocessing import label_binarize
    from sklearn.multiclass import OneVsRestClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score,fbeta_score,classification_report,confusion_matrix,precision_recall_curve,roc_auc_score,roc_curve
    
    #模型选择分类问题性能度量accuracy_score模型
    def test_accuracy_score():
        y_true=[1,1,1,1,1,0,0,0,0,0]
        y_pred=[0,0,1,1,0,0,1,1,0,0]
        print('Accuracy Score(normalize=True):',accuracy_score(y_true,y_pred,normalize=True))
        print('Accuracy Score(normalize=False):',accuracy_score(y_true,y_pred,normalize=False))
        
    #调用test_accuracy_score()
    test_accuracy_score()

    #模型选择分类问题性能度量precision_score模型
    def test_precision_score():
        y_true=[1,1,1,1,1,0,0,0,0,0]
        y_pred=[0,0,1,1,0,0,0,0,0,0]
        print('Accuracy Score:',accuracy_score(y_true,y_pred,normalize=True))
        print('Precision Score:',precision_score(y_true,y_pred))
        
    #调用test_precision_score()
    test_precision_score()

    #模型选择分类问题性能度量recall_score模型
    def test_recall_score():
        y_true=[1,1,1,1,1,0,0,0,0,0]
        y_pred=[0,0,1,1,0,0,0,0,0,0]
        print('Accuracy Score:',accuracy_score(y_true,y_pred,normalize=True))
        print('Precision Score:',precision_score(y_true,y_pred))
        print('Recall Score:',recall_score(y_true,y_pred))
        
    #调用test_recall_score()
    test_recall_score()

    #模型选择分类问题性能度量f1_score模型
    def test_f1_score():
        y_true=[1,1,1,1,1,0,0,0,0,0]
        y_pred=[0,0,1,1,0,0,0,0,0,0]
        print('Accuracy Score:',accuracy_score(y_true,y_pred,normalize=True))
        print('Precision Score:',precision_score(y_true,y_pred))
        print('Recall Score:',recall_score(y_true,y_pred))
        print('F1 Score:',f1_score(y_true,y_pred))
        
    #调用test_f1_score()
    test_f1_score()

    #模型选择分类问题性能度量fbeta_score模型
    def test_fbeta_score():
        y_true=[1,1,1,1,1,0,0,0,0,0]
        y_pred=[0,0,1,1,0,0,0,0,0,0]
        print('Accuracy Score:',accuracy_score(y_true,y_pred,normalize=True))
        print('Precision Score:',precision_score(y_true,y_pred))
        print('Recall Score:',recall_score(y_true,y_pred))
        print('F1 Score:',f1_score(y_true,y_pred))
        print('Fbeta Score(beta=0.001):',fbeta_score(y_true,y_pred,beta=0.001))
        print('Fbeta Score(beta=1):',fbeta_score(y_true,y_pred,beta=1))
        print('Fbeta Score(beta=10):',fbeta_score(y_true,y_pred,beta=10))
        print('Fbeta Score(beta=10000):',fbeta_score(y_true,y_pred,beta=10000))
        
    #调用test_fbeta_score()
    test_fbeta_score()

    #模型选择分类问题性能度量classification_report模型
    def test_classification_report():
        y_true=[1,1,1,1,1,0,0,0,0,0]
        y_pred=[0,0,1,1,0,0,0,0,0,0]
        print('Classification Report:
    ',classification_report(y_true,y_pred,target_names=["class_0","class_1"]))
        
    #调用test_classification_report()
    test_classification_report()

    #模型选择分类问题性能度量confusion_matrix模型
    def test_confusion_matrix():
        y_true=[1,1,1,1,1,0,0,0,0,0]
        y_pred=[0,0,1,1,0,0,0,0,0,0]
        print('Confusion Matrix:
    ',confusion_matrix(y_true,y_pred,labels=[0,1]))
        
    #调用test_confusion_matrix()
    test_confusion_matrix()

    #模型选择分类问题性能度量precision_recall_curve模型
    def test_precision_recall_curve():
        ### 加载数据
        iris=load_iris()
        X=iris.data
        y=iris.target
        # 二元化标记
        y = label_binarize(y, classes=[0, 1, 2])
        n_classes = y.shape[1]
        #### 添加噪音
        np.random.seed(0)
        n_samples, n_features = X.shape
        X = np.c_[X, np.random.randn(n_samples, 200 * n_features)]
    
        X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.5,random_state=0)
        ### 训练模型
        clf=OneVsRestClassifier(SVC(kernel='linear', probability=True,random_state=0))
        clf.fit(X_train,y_train)
        y_score = clf.fit(X_train, y_train).decision_function(X_test)
        ### 获取 P-R
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        precision = dict()
        recall = dict()
        for i in range(n_classes):
            precision[i], recall[i], _ = precision_recall_curve(y_test[:, i],y_score[:, i])
            ax.plot(recall[i],precision[i],label="target=%s"%i)
        ax.set_xlabel("Recall Score")
        ax.set_ylabel("Precision Score")
        ax.set_title("P-R")
        ax.legend(loc='best')
        ax.set_xlim(0,1.1)
        ax.set_ylim(0,1.1)
        ax.grid()
        plt.show()
        
    #调用test_precision_recall_curve()
    test_precision_recall_curve()

    #模型选择分类问题性能度量roc_curve、roc_auc_score模型
    def test_roc_auc_score():
        ### 加载数据
        iris=load_iris()
        X=iris.data
        y=iris.target
        # 二元化标记
        y = label_binarize(y, classes=[0, 1, 2])
        n_classes = y.shape[1]
        #### 添加噪音
        np.random.seed(0)
        n_samples, n_features = X.shape
        X = np.c_[X, np.random.randn(n_samples, 200 * n_features)]
    
        X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.5,random_state=0)
        ### 训练模型
        clf=OneVsRestClassifier(SVC(kernel='linear', probability=True,random_state=0))
        clf.fit(X_train,y_train)
        y_score = clf.fit(X_train, y_train).decision_function(X_test)
        ### 获取 ROC
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        fpr = dict()
        tpr = dict()
        roc_auc=dict()
        for i in range(n_classes):
            fpr[i], tpr[i], _ = roc_curve(y_test[:, i],y_score[:, i])
            roc_auc[i] = roc_auc_score(fpr[i], tpr[i])
            ax.plot(fpr[i],tpr[i],label="target=%s,auc=%s"%(i,roc_auc[i]))
        ax.plot([0, 1], [0, 1], 'k--')
        ax.set_xlabel("FPR")
        ax.set_ylabel("TPR")
        ax.set_title("ROC")
        ax.legend(loc="best")
        ax.set_xlim(0,1.1)
        ax.set_ylim(0,1.1)
        ax.grid()
        plt.show()
        
    #调用test_roc_auc_score()
    test_roc_auc_score()
  • 相关阅读:
    吴裕雄--天生自然 Zookeeper学习笔记--Zookeeper 权限控制 ACL
    【机器学习】机器学习基础
    【QT】利用pyqt5实现简单界面
    【Mathtype】安装Mathtype后,word无法粘贴的问题
    【优化方法】牛顿法
    博客样式设置
    2018.8.28 练习赛
    2018.8.27 练习赛
    2018.8.26 练习赛
    2018.8.25 练习赛
  • 原文地址:https://www.cnblogs.com/tszr/p/10802346.html
Copyright © 2011-2022 走看看