zoukankan      html  css  js  c++  java
  • 吴裕雄 PYTHON 神经网络——TENSORFLOW 双隐藏层自编码器设计处理MNIST手写数字数据集并使用TENSORBORD描绘神经网络数据

    import os
    import numpy as np
    import tensorflow as tf
    import matplotlib.pyplot as plt
    from tensorflow.examples.tutorials.mnist import input_data
    
     
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
     
    batch_size = 128  # batch容量
    display_step = 1  # 展示间隔
    learning_rate = 0.01  # 学习率
    training_epochs = 20  # 训练轮数,1轮等于n_samples/batch_size
    example_to_show = 10  # 展示图像数目
     
    n_hidden1_units = 256  # 第一隐藏层
    n_hidden2_units = 128  # 第二隐藏层
    n_input_units = 784
    n_output_units = n_input_units
     
    def WeightsVariable(n_in, n_out, name_str):
        return tf.Variable(tf.random_normal([n_in, n_out]), dtype=tf.float32, name=name_str)
     
    def biasesVariable(n_out, name_str):
        return tf.Variable(tf.random_normal([n_out]), dtype=tf.float32, name=name_str)
     
    def encoder(x_origin, activate_func=tf.nn.sigmoid):
        with tf.name_scope('Layer1'):
            Weights = WeightsVariable(n_input_units, n_hidden1_units, 'Weights')
            biases = biasesVariable(n_hidden1_units, 'biases')
            x_code1 = activate_func(tf.add(tf.matmul(x_origin, Weights), biases))
        with tf.name_scope('Layer2'):
            Weights = WeightsVariable(n_hidden1_units, n_hidden2_units, 'Weights')
            biases = biasesVariable(n_hidden2_units, 'biases')
            x_code2 = activate_func(tf.add(tf.matmul(x_code1, Weights), biases))
        return x_code2
     
    def decode(x_code, activate_func=tf.nn.sigmoid):
        with tf.name_scope('Layer1'):
            Weights = WeightsVariable(n_hidden2_units, n_hidden1_units, 'Weights')
            biases = biasesVariable(n_hidden1_units, 'biases')
            x_decode1 = activate_func(tf.add(tf.matmul(x_code, Weights), biases))
        with tf.name_scope('Layer2'):
            Weights = WeightsVariable(n_hidden1_units, n_output_units, 'Weights')
            biases = biasesVariable(n_output_units, 'biases')
            x_decode2 = activate_func(tf.add(tf.matmul(x_decode1, Weights), biases))
        return x_decode2
     
    with tf.Graph().as_default():
        with tf.name_scope('Input'):
            X_input = tf.placeholder(tf.float32, [None, n_input_units])
        with tf.name_scope('Encode'):
            X_code = encoder(X_input)
        with tf.name_scope('decode'):
            X_decode = decode(X_code)
        with tf.name_scope('loss'):
            loss = tf.reduce_mean(tf.pow(X_input - X_decode, 2))
        with tf.name_scope('train'):
            Optimizer = tf.train.RMSPropOptimizer(learning_rate)
            train = Optimizer.minimize(loss)
     
        init = tf.global_variables_initializer()
     
        # 因为使用了tf.Graph.as_default()上下文环境
        # 所以下面的记录必须放在上下文里面,否则记录下来的图是空的(get不到上面的default)
        writer = tf.summary.FileWriter(logdir='logsss', graph=tf.get_default_graph())
        writer.flush()
     
        mnist = input_data.read_data_sets('E:\MNIST_data\', one_hot=True)
     
        with tf.Session() as sess:
            sess.run(init)
            total_batch = int(mnist.train.num_examples / batch_size)
            for epoch in range(training_epochs):
                for i in range(total_batch):
                    batch_xs, batch_ys = mnist.train.next_batch(batch_size)
                    _, Loss = sess.run([train, loss], feed_dict={X_input: batch_xs})
                    Loss = sess.run(loss, feed_dict={X_input: batch_xs})
                if epoch % display_step == 0:
                    print('Epoch: %04d' % (epoch + 1), 'loss= ', '{:.9f}'.format(Loss))
            writer.close()
            print('训练完毕!')
     
            '''比较输入和输出的图像'''
            # 输出图像获取
            reconstructions = sess.run(X_decode, feed_dict={X_input: mnist.test.images[:example_to_show]})
            # 画布建立
            f, a = plt.subplots(2, 10, figsize=(10, 2))
            for i in range(example_to_show):
                a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
                a[1][i].imshow(np.reshape(reconstructions[i], (28, 28)))
            f.show()  # 渲染图像
            plt.draw()  # 刷新图像
            # plt.waitforbuttonpress()

     

  • 相关阅读:
    2020软件工程作业04
    2020软件工程作业03
    一个我一定会完成的web学习项目
    2020软件工程作业02
    2020软件工程作业01
    423团队选题报告
    计算与软件工程作业五
    计算与软件工程第四次作业
    计算与软件工程第三次作业
    计算与软件工程作业二
  • 原文地址:https://www.cnblogs.com/tszr/p/10864284.html
Copyright © 2011-2022 走看看