zoukankan      html  css  js  c++  java
  • 吴裕雄 python 神经网络——TensorFlow 完整神经网络样例程序

    import tensorflow as tf
    from numpy.random import RandomState
    
    batch_size = 8
    w1= tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
    w2= tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))
    x = tf.placeholder(tf.float32, shape=(None, 2), name="x-input")
    y_= tf.placeholder(tf.float32, shape=(None, 1), name='y-input')
    
    a = tf.matmul(x, w1)
    y = tf.matmul(a, w2)
    y = tf.sigmoid(y)
    cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0))
                                    + (1 - y_) * tf.log(tf.clip_by_value(1 - y, 1e-10, 1.0)))
    train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
    
    rdm = RandomState(1)
    X = rdm.rand(128,2)
    Y = [[int(x1+x2 < 1)] for (x1, x2) in X]
    
    with tf.Session() as sess:
        init_op = tf.global_variables_initializer()
        sess.run(init_op)
        
        # 输出目前(未经训练)的参数取值。
        print(sess.run(w1))
        print(sess.run(w2))
        print("
    ")
        
        # 训练模型。
        STEPS = 5000
        for i in range(STEPS):
            start = (i*batch_size) % 128
            end = (i*batch_size) % 128 + batch_size
            sess.run([train_step, y, y_], feed_dict={x: X[start:end], y_: Y[start:end]})
            if i % 1000 == 0:
                total_cross_entropy = sess.run(cross_entropy, feed_dict={x: X, y_: Y})
                print("After %d training step(s), cross entropy on all data is %g" % (i, total_cross_entropy))
        
        # 输出训练后的参数取值。
        print("
    ")
        print(sess.run(w1))
        print(sess.run(w2))

  • 相关阅读:
    Execution Contexts (执行上下文)
    OOP—ECMAScript实现详解
    requireJS入门
    SqlServer 傲娇的表变量
    CSharp进阶 引用类型引发的血案
    CSharp进阶 都是请求惹的祸
    z-index问题
    js中事件(自定义事件)
    做了个后末日朋克风的梦
    昨晚的梦
  • 原文地址:https://www.cnblogs.com/tszr/p/10874261.html
Copyright © 2011-2022 走看看