zoukankan      html  css  js  c++  java
  • 吴裕雄 python 神经网络——TensorFlow 自定义损失函数

    import tensorflow as tf
    from numpy.random import RandomState
    
    batch_size = 8
    x = tf.placeholder(tf.float32, shape=(None, 2), name="x-input")
    y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input')
    w1= tf.Variable(tf.random_normal([2, 1], stddev=1, seed=1))
    y = tf.matmul(x, w1)
    
    # 定义损失函数使得预测少了的损失大,于是模型应该偏向多的方向预测。
    loss_less = 10
    loss_more = 1
    loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * loss_more, (y_ - y) * loss_less))
    train_step = tf.train.AdamOptimizer(0.001).minimize(loss)
    
    rdm = RandomState(1)
    X = rdm.rand(128,2)
    Y = [[x1+x2+(rdm.rand()/10.0-0.05)] for (x1, x2) in X]
    
    with tf.Session() as sess:
        init_op = tf.global_variables_initializer()
        sess.run(init_op)
        STEPS = 5000
        for i in range(STEPS):
            start = (i*batch_size) % 128
            end = (i*batch_size) % 128 + batch_size
            sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
            if i % 1000 == 0:
                print("After %d training step(s), w1 is: " % (i))
                print sess.run(w1), "
    "
        print "Final w1 is: 
    ", sess.run(w1)

    loss_less = 1
    loss_more = 10
    loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * loss_more, (y_ - y) * loss_less))
    train_step = tf.train.AdamOptimizer(0.001).minimize(loss)
    
    with tf.Session() as sess:
        init_op = tf.global_variables_initializer()
        sess.run(init_op)
        STEPS = 5000
        for i in range(STEPS):
            start = (i*batch_size) % 128
            end = (i*batch_size) % 128 + batch_size
            sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
            if i % 1000 == 0:
                print("After %d training step(s), w1 is: " % (i))
                print sess.run(w1), "
    "
        print "Final w1 is: 
    ", sess.run(w1)

    loss = tf.losses.mean_squared_error(y, y_)
    train_step = tf.train.AdamOptimizer(0.001).minimize(loss)
    
    with tf.Session() as sess:
        init_op = tf.global_variables_initializer()
        sess.run(init_op)
        STEPS = 5000
        for i in range(STEPS):
            start = (i*batch_size) % 128
            end = (i*batch_size) % 128 + batch_size
            sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
            if i % 1000 == 0:
                print("After %d training step(s), w1 is: " % (i))
                print sess.run(w1), "
    "
        print "Final w1 is: 
    ", sess.run(w1)

  • 相关阅读:
    解决“google快照无法打开”的简单而有效的方法~
    在Struts2里面嵌入Spring
    HDU
    设计模式大总结(二)
    Node.js入门笔记
    草图检索和识别[开源]
    2019-10-31-VisualStudio-断点调试详解
    2019-10-31-VisualStudio-断点调试详解
    2019-9-2-C#-设计模式-责任链
    2019-9-2-C#-设计模式-责任链
  • 原文地址:https://www.cnblogs.com/tszr/p/10874340.html
Copyright © 2011-2022 走看看