zoukankan      html  css  js  c++  java
  • 吴裕雄 python 神经网络——TensorFlow 输入数据处理框架

    import tensorflow as tf
    
    files = tf.train.match_filenames_once("E:\MNIST_data\output.tfrecords")
    filename_queue = tf.train.string_input_producer(files, shuffle=False) 
    
    # 读取文件。
    
    reader = tf.TFRecordReader()
    _,serialized_example = reader.read(filename_queue)
    
    # 解析读取的样例。
    features = tf.parse_single_example(
        serialized_example,
        features={
            'image_raw':tf.FixedLenFeature([],tf.string),
            'pixels':tf.FixedLenFeature([],tf.int64),
            'label':tf.FixedLenFeature([],tf.int64)
        })
    
    decoded_images = tf.decode_raw(features['image_raw'],tf.uint8)
    retyped_images = tf.cast(decoded_images, tf.float32)
    labels = tf.cast(features['label'],tf.int32)
    #pixels = tf.cast(features['pixels'],tf.int32)
    images = tf.reshape(retyped_images, [784])
    
    min_after_dequeue = 10000
    batch_size = 100
    capacity = min_after_dequeue + 3 * batch_size
    
    image_batch, label_batch = tf.train.shuffle_batch([images, labels], batch_size=batch_size, capacity=capacity, min_after_dequeue=min_after_dequeue)
    
    def inference(input_tensor, weights1, biases1, weights2, biases2):
        layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
        return tf.matmul(layer1, weights2) + biases2
    
    # 模型相关的参数
    INPUT_NODE = 784
    OUTPUT_NODE = 10
    LAYER1_NODE = 500
    REGULARAZTION_RATE = 0.0001   
    TRAINING_STEPS = 5000        
    
    weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
    biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
    
    weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
    biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))
    
    y = inference(image_batch, weights1, biases1, weights2, biases2)
        
    # 计算交叉熵及其平均值
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=label_batch)
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
        
    # 损失函数的计算
    regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
    regularaztion = regularizer(weights1) + regularizer(weights2)
    loss = cross_entropy_mean + regularaztion
    
    # 优化损失函数
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
        
    # 初始化会话,并开始训练过程。
    with tf.Session() as sess:
        # tf.global_variables_initializer().run()
        sess.run((tf.global_variables_initializer(),tf.local_variables_initializer()))
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        # 循环的训练神经网络。
        for i in range(TRAINING_STEPS):
            if i % 1000 == 0:
                print("After %d training step(s), loss is %g " % (i, sess.run(loss)))   
            sess.run(train_step) 
        coord.request_stop()
        coord.join(threads)       

  • 相关阅读:
    Java基础——银行例题
    JavaEE——HTML5绘画
    Java基础——构造器
    HTML5-GPS定位
    HTML+CSS+JavaScript小例题
    JDBC综合例题
    java并发编程(更新)
    struts2配置文件的解释
    排序
    集合
  • 原文地址:https://www.cnblogs.com/tszr/p/10885394.html
Copyright © 2011-2022 走看看