zoukankan      html  css  js  c++  java
  • 吴裕雄 python 神经网络——TensorFlow 卷积神经网络手写数字图片识别

    import os
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    INPUT_NODE = 784
    OUTPUT_NODE = 10
    LAYER1_NODE = 500
    
    def get_weight_variable(shape, regularizer):
        weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
        if(regularizer != None): 
            tf.add_to_collection('losses', regularizer(weights))
        return weights
    
    def inference(input_tensor, regularizer):
        with tf.variable_scope('layer1'):
            weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
            biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
            layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
            
        with tf.variable_scope('layer2'):
            weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
            biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
            layer2 = tf.matmul(layer1, weights) + biases
        return layer2
    
    BATCH_SIZE = 100 
    LEARNING_RATE_BASE = 0.8
    LEARNING_RATE_DECAY = 0.99
    REGULARIZATION_RATE = 0.0001
    TRAINING_STEPS = 30000
    MOVING_AVERAGE_DECAY = 0.99 
    MODEL_SAVE_PATH = "F:\TensorFlowGoogle\201806-github\datasets\MNIST_data\"
    MODEL_NAME = "mnist_model"
    
    def train(mnist):
        # 定义输入输出placeholder。
        x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
        y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
        regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
        y = inference(x, regularizer)
        global_step = tf.Variable(0, trainable=False)
        
        # 定义损失函数、学习率、滑动平均操作以及训练过程。
        variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
        variables_averages_op = variable_averages.apply(tf.trainable_variables())
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
        cross_entropy_mean = tf.reduce_mean(cross_entropy)
        loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
        learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,staircase=True)
        train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
        with tf.control_dependencies([train_step, variables_averages_op]):
            train_op = tf.no_op(name='train')
        # 初始化TensorFlow持久化类。
        saver = tf.train.Saver()
        with tf.Session() as sess:
            tf.global_variables_initializer().run()
            for i in range(TRAINING_STEPS):
                xs, ys = mnist.train.next_batch(BATCH_SIZE)
                _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
                if i % 1000 == 0:
                    print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
                    saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
                    
    def main(argv=None):
        mnist = input_data.read_data_sets("F:\TensorFlowGoogle\201806-github\datasets\MNIST_data\", one_hot=True)
        train(mnist)
    
    if __name__ == '__main__':
        main()

  • 相关阅读:
    浮点数转换成二进制的方法
    复杂的函数声明
    任务栏上最小化程序后,应用程序仍然处于激活状态
    处理多屏
    托盘在XP下不能显示tooltip,在Vista和Windows7下正常
    第一次WM_PAINT事件执行前显示白色框 的解决办法
    IPv6地址在URL上的格式
    19 层模型中的固定定位
    18css中的相对定位
    17css中的浮动模型
  • 原文地址:https://www.cnblogs.com/tszr/p/11090662.html
Copyright © 2011-2022 走看看