zoukankan      html  css  js  c++  java
  • 吴裕雄--天生自然 R语言开发学习:重抽样与自助法

    #-------------------------------------------------------------------------#
    # R in Action (2nd ed): Chapter 12                                        #
    # Resampling statistics and bootstrapping                                 #
    # requires packages coin, multcomp, vcd, MASS, lmPerm, boot               #
    # install.packages(c("coin","multcomp", "vcd", "MASS", "boot"))           #
    # Follow chapter instructions for installing lmPerm                       #
    #-------------------------------------------------------------------------#
    
    par(ask=TRUE)
    
    # Listing 12.1 - t-test vs. oneway permutation test for the hypothetical data
    library(coin)
    score <- c(40, 57, 45, 55, 58, 57, 64, 55, 62, 65)
    treatment <- factor(c(rep("A",5), rep("B",5)))
    mydata <- data.frame(treatment, score)
    t.test(score~treatment, data=mydata, var.equal=TRUE)
    oneway_test(score~treatment, data=mydata, distribution="exact")
    
    # Wilcoxon Mann-Whitney U test
    UScrime <- transform(UScrime, So = factor(So))
    wilcox_test(Prob ~ So, data=UScrime, distribution="exact")
    
    # k sample test
    library(multcomp)
    set.seed(1234) # make results reproducible
    oneway_test(response~trt, data=cholesterol, 
                distribution=approximate(B=9999))
    
    # independence in contingency tables
    library(coin)
    library(vcd)
    Arthritis <- transform(Arthritis, 
                           Improved = as.factor(as.numeric(Improved)))
    set.seed(1234)
    chisq_test(Treatment~Improved, data=Arthritis,
               distribution=approximate(B=9999))
    
    
    # independence between numeric variables
    states <- as.data.frame(state.x77)
    set.seed(1234)
    spearman_test(Illiteracy ~ Murder, data=states, 
                  distribution=approximate(B=9999))
    
    
    # dependent 2-sample and k-sample tests
    library(coin)
    library(MASS)
    wilcoxsign_test(U1 ~ U2, data=UScrime, distribution="exact")
    
    
    # Listing 12.2 - Permutation tests for simple linear regression
    library(lmPerm)
    set.seed(1234)
    fit <- lmp(weight ~ height, data=women, perm="Prob")
    summary(fit)
    
    
    # Listing 12.3 - Permutation tests for polynomial regression
    library(lmPerm)
    set.seed(1234)
    fit <- lmp(weight ~ height + I(height^2), data=women, perm="Prob")
    summary(fit)
    
    # Listing 12.4 - Permutation tests for multiple regression
    library(lmPerm)
    set.seed(1234)
    states <- as.data.frame(state.x77)
    fit <- lmp(Murder ~ Population + Illiteracy+Income+Frost,data=states, perm="Prob")
    summary(fit)
    
    
    # Listing 12.5 - Permutation test for One-Way ANOVA
    library(lmPerm)
    library(multcomp)
    set.seed(1234)
    fit <- lmp(response ~ trt, data=cholesterol, perm="Prob")
    anova(fit)
    
    
    #  Listing 12.6 - Permutation test for One-Way ANCOVA
    library(lmPerm)
    set.seed(1234)
    fit <- lmp(weight ~ gesttime + dose, data=litter, perm="Prob")
    anova(fit)
    
    
    # Listing 12.7 - Permutation test for Two-way ANOVA
    library(lmPerm)
    set.seed(1234)
    fit <- lmp(len ~ supp*dose, data=ToothGrowth, perm="Prob")
    anova(fit)
    
    
    # bootstrapping a single statistic (R2)
    rsq <- function(formula, data, indices) {
      d <- data[indices,]
      fit <- lm(formula, data=d)
      return(summary(fit)$r.square)
    } 
    
    library(boot)
    set.seed(1234)
    results <- boot(data=mtcars, statistic=rsq, 
                    R=1000, formula=mpg~wt+disp)
    print(results)
    plot(results)
    boot.ci(results, type=c("perc", "bca"))
    
    
    # bootstrapping several statistics (regression coefficients)
    bs <- function(formula, data, indices) {                
      d <- data[indices,]                                    
      fit <- lm(formula, data=d)                                                                                                
      return(coef(fit))                                    
    }
    library(boot)
    set.seed(1234)
    results <- boot(data=mtcars, statistic=bs,             
                    R=1000, formula=mpg~wt+disp) 
    
    print(results)
    plot(results, index=2)
    boot.ci(results, type="bca", index=2)
    boot.ci(results, type="bca", index=3)
  • 相关阅读:
    Filebeat 日志收集器 安装和配置
    纠错式教学法对比鼓励式教学法 -----Lily、贝乐、英孚,乐加乐、剑桥国际、优学汇、北外青少
    硅谷夜谈
    指路Reactive Programming
    Spring WebFlux 要革了谁的命?
    flink部署操作-flink standalone集群安装部署
    Flink的高可用集群环境
    当怪物来敲门 经典台词
    浅析几种线程安全模型
    最详细的排序解析,理解七大排序
  • 原文地址:https://www.cnblogs.com/tszr/p/11175904.html
Copyright © 2011-2022 走看看