zoukankan      html  css  js  c++  java
  • 吴裕雄--天生自然 R语言开发学习:使用ggplot2进行高级绘图(续二)

    #----------------------------------------------------------#
    # R in Action (2nd ed): Chapter 19                         #
    # Advanced graphics with ggplot2                           #
    # requires packages ggplot2, RColorBrewer, gridExtra,      #
    #   and car (for datasets)                                 #
    # install.packages(c("ggplot2", "gridExtra",               # 
    #      "RColorBrewer", "car"))                             #
    #----------------------------------------------------------#
    
    par(ask=TRUE)
    
    # Basic scatterplot
    library(ggplot2)
    ggplot(data=mtcars, aes(x=wt, y=mpg)) +
      geom_point() +
      labs(title="Automobile Data", x="Weight", y="Miles Per Gallon")
    
    
    # Scatter plot with additional options
    library(ggplot2)
    ggplot(data=mtcars, aes(x=wt, y=mpg)) +
      geom_point(pch=17, color="blue", size=2) +
      geom_smooth(method="lm", color="red", linetype=2) +
      labs(title="Automobile Data", x="Weight", y="Miles Per Gallon")
    
    
    # Scatter plot with faceting and grouping
    data(mtcars)
    mtcars$am <- factor(mtcars$am, levels=c(0,1),
                        labels=c("Automatic", "Manual"))
    mtcars$vs <- factor(mtcars$vs, levels=c(0,1),
                        labels=c("V-Engine", "Straight Engine"))
    mtcars$cyl <- factor(mtcars$cyl)
    
    
    library(ggplot2)
    ggplot(data=mtcars, aes(x=hp, y=mpg,
                            shape=cyl, color=cyl)) +
      geom_point(size=3) +
      facet_grid(am~vs) +
      labs(title="Automobile Data by Engine Type",
           x="Horsepower", y="Miles Per Gallon")
    
    # Using geoms
    data(singer, package="lattice")
    ggplot(singer, aes(x=height)) + geom_histogram()
    
    ggplot(singer, aes(x=voice.part, y=height)) + geom_boxplot()
    
    data(Salaries, package="car")
    library(ggplot2)
    ggplot(Salaries, aes(x=rank, y=salary)) +
      geom_boxplot(fill="cornflowerblue",
                   color="black", notch=TRUE)+
      geom_point(position="jitter", color="blue", alpha=.5)+
      geom_rug(side="l", color="black")
    
    
    # Grouping
    library(ggplot2)
    data(singer, package="lattice")
    ggplot(singer, aes(x=voice.part, y=height)) +
      geom_violin(fill="lightblue") +
      geom_boxplot(fill="lightgreen", width=.2)
    
    data(Salaries, package="car")
    library(ggplot2)
    ggplot(data=Salaries, aes(x=salary, fill=rank)) +
      geom_density(alpha=.3)
    
    ggplot(Salaries, aes(x=yrs.since.phd, y=salary, color=rank,
                         shape=sex)) + geom_point()
    
    ggplot(Salaries, aes(x=rank, fill=sex)) +
      geom_bar(position="stack") + labs(title='position="stack"')
    
    ggplot(Salaries, aes(x=rank, fill=sex)) +
      geom_bar(position="dodge") + labs(title='position="dodge"')
    
    ggplot(Salaries, aes(x=rank, fill=sex)) +
      geom_bar(position="fill") + labs(title='position="fill"')
    
    
    # Placing options
    ggplot(Salaries, aes(x=rank, fill=sex))+ geom_bar()
    
    ggplot(Salaries, aes(x=rank)) + geom_bar(fill="red")
    
    ggplot(Salaries, aes(x=rank, fill="red")) + geom_bar()
    
    
    # Faceting
    data(singer, package="lattice")
    library(ggplot2)
    ggplot(data=singer, aes(x=height)) +
      geom_histogram() +
      facet_wrap(~voice.part, nrow=4)
    
    library(ggplot2)
    ggplot(Salaries, aes(x=yrs.since.phd, y=salary, color=rank,
                         shape=rank)) + geom_point() + facet_grid(.~sex)
    
    data(singer, package="lattice")
    library(ggplot2)
    ggplot(data=singer, aes(x=height, fill=voice.part)) +
      geom_density() +
      facet_grid(voice.part~.)
    
    
    # Adding smoothed lines
    data(Salaries, package="car")
    library(ggplot2)
    ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary)) +
      geom_smooth() + geom_point()
    
    ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary,
                              linetype=sex, shape=sex, color=sex)) +
      geom_smooth(method=lm, formula=y~poly(x,2),
                  se=FALSE, size=1) +
      geom_point(size=2)
    
    
    # Modifying axes
    data(Salaries,package="car")
    library(ggplot2)
    ggplot(data=Salaries, aes(x=rank, y=salary, fill=sex)) +
      geom_boxplot() +
      scale_x_discrete(breaks=c("AsstProf", "AssocProf", "Prof"),
                       labels=c("Assistant
    Professor",
                                "Associate
    Professor",
                                "Full
    Professor")) +
      scale_y_continuous(breaks=c(50000, 100000, 150000, 200000),
                         labels=c("$50K", "$100K", "$150K", "$200K")) +
      labs(title="Faculty Salary by Rank and Sex", x="", y="")
    
    
    # Legends
    data(Salaries,package="car")
    library(ggplot2)
    ggplot(data=Salaries, aes(x=rank, y=salary, fill=sex)) +
      geom_boxplot() +
      scale_x_discrete(breaks=c("AsstProf", "AssocProf", "Prof"),
                       labels=c("Assistant
    Professor",
                                "Associate
    Professor",
                                "Full
    Professor")) +
      scale_y_continuous(breaks=c(50000, 100000, 150000, 200000),
                         labels=c("$50K", "$100K", "$150K", "$200K")) +
      labs(title="Faculty Salary by Rank and Gender",
           x="", y="", fill="Gender") +
      theme(legend.position=c(.1,.8))
    
    
    # Scales
    ggplot(mtcars, aes(x=wt, y=mpg, size=disp)) +
      geom_point(shape=21, color="black", fill="cornsilk") +
      labs(x="Weight", y="Miles Per Gallon",
           title="Bubble Chart", size="Engine
    Displacement")
    
    data(Salaries, package="car")
    ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary, color=rank)) +
      scale_color_manual(values=c("orange", "olivedrab", "navy")) +
      geom_point(size=2)
    
    ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary, color=rank)) +
      scale_color_brewer(palette="Set1") + geom_point(size=2)
    
    library(RColorBrewer)
    display.brewer.all()
    
    
    # Themes
    data(Salaries, package="car")
    library(ggplot2)
    mytheme <- theme(plot.title=element_text(face="bold.italic",
                                             size="14", color="brown"),
                     axis.title=element_text(face="bold.italic",
                                             size=10, color="brown"),
                     axis.text=element_text(face="bold", size=9,
                                            color="darkblue"),
                     panel.background=element_rect(fill="white",
                                                   color="darkblue"),
                     panel.grid.major.y=element_line(color="grey",
                                                     linetype=1),
                     panel.grid.minor.y=element_line(color="grey",
                                                     linetype=2),
                     panel.grid.minor.x=element_blank(),
                     legend.position="top")
    
    ggplot(Salaries, aes(x=rank, y=salary, fill=sex)) +
      geom_boxplot() +
      labs(title="Salary by Rank and Sex", 
           x="Rank", y="Salary") +
      mytheme
    
    
    # Multiple graphs per page
    data(Salaries, package="car")
    library(ggplot2)
    p1 <- ggplot(data=Salaries, aes(x=rank)) + geom_bar()
    p2 <- ggplot(data=Salaries, aes(x=sex)) + geom_bar()
    p3 <- ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary)) + geom_point()
    
    library(gridExtra)
    grid.arrange(p1, p2, p3, ncol=3)
    
    
    # Saving graphs
    ggplot(data=mtcars, aes(x=mpg)) + geom_histogram()
    ggsave(file="mygraph.pdf")
  • 相关阅读:
    win7下安装IIS
    C#在处理多线程更新到UI控件的多种方法
    更新DataGridVeiw中的数据到后台数据库中
    ArcGIS Engine App update
    C#中提供的精准测试程序运行时间的类Stopwatch
    ArcMap10 生成随机点
    HDU 2111 Saving HDU
    HDU 1213 How Many Tables
    HDU 2521 反素数
    HDU 1995 汉诺塔V
  • 原文地址:https://www.cnblogs.com/tszr/p/11177777.html
Copyright © 2011-2022 走看看