zoukankan      html  css  js  c++  java
  • 吴裕雄--天生自然 python数据分析:健康指标聚集分析(健康分析)

    # This Python 3 environment comes with many helpful analytics libraries installed
    # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
    # For example, here's several helpful packages to load in 
    
    import numpy as np # linear algebra
    import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
    
    # Input data files are available in the "../input/" directory.
    # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory
    df=pd.read_csv('F:\kaggleDataSet\Key_indicator_districtwise\Key_indicator_districtwise.csv')
    df.head()

    x=df['AA_Sample_Units_Total']
    y=df['AA_Sample_Units_Rural']
    z=df['AA_Population_Urban']
    import matplotlib.pyplot as plt
    import seaborn as sns
    plt.title('State_District_Name vs AA_Sample_Units_Total ')
    plt.xlabel('State_District_Name')
    plt.ylabel('AA_Sample_Units_Total')
    plt.scatter(x,y)

    plt.hist(x)
    plt.title('AA_Sample_Units_Total vs Frequency')
    plt.xlabel('AA_Sample_Units_Total')
    plt.ylabel('Frequency')

    plt.hist(y)
    plt.title('AA_Sample_Units_Rural vs frequency')
    plt.xlabel('AA_Sample_Units_Rural')
    plt.ylabel('Frequency')

    plt.hist(z)
    plt.title('AA_Population_Urban vs Frequency')
    plt.xlabel('AA_Population_Urban')
    plt.ylabel('Frequency')

    q=df['AA_Ever_Married_Women_Aged_15_49_Years_Total']
    q
    w=q.sort_values()
    w

    plt.boxplot(w)

    plt.boxplot(y)

    import matplotlib.pyplot as plt 
    import numpy as np 
    from sklearn import datasets, linear_model, metrics 
      
    # load the boston dataset 
    boston = datasets.load_boston(return_X_y=False) 
      
    # defining feature matrix(X) and response vector(y) 
    X = boston.data 
    y = boston.target 
      
    # splitting X and y into training and testing sets 
    from sklearn.model_selection import train_test_split 
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, 
                                                        random_state=1) 
      
    # create linear regression object 
    reg = linear_model.LinearRegression() 
      
    # train the model using the training sets 
    reg.fit(X_train, y_train) 
      
    # regression coefficients 
    print('Coefficients: 
    ', reg.coef_) 
      
    # variance score: 1 means perfect prediction 
    print('Variance score: {}'.format(reg.score(X_test, y_test))) 
      
    # plot for residual error 
      
    ## setting plot style 
    plt.style.use('fivethirtyeight') 
      
    ## plotting residual errors in training data 
    plt.scatter(reg.predict(X_train), reg.predict(X_train) - y_train, 
                color = "green", s = 10, label = 'Train data') 
      
    ## plotting residual errors in test data 
    plt.scatter(reg.predict(X_test), reg.predict(X_test) - y_test, 
                color = "blue", s = 10, label = 'Test data') 
      
    ## plotting line for zero residual error 
    plt.hlines(y = 0, xmin = 0, xmax = 50, linewidth = 2) 
      
    ## plotting legend 
    plt.legend(loc = 'upper right') 
      
    ## plot title 
    plt.title("Residual errors") 
      
    ## function to show plot 
    plt.show() 

  • 相关阅读:
    silverlight与CSLA的快速应用01序
    oracle常用的时间格式转换
    实现打印从数字1到5,非常规方法
    Java学习笔记之数据结构中的树
    Java探究心得之三元运算符
    Java学习心得之各种小算法
    深入Java核心 Java内存分配原理(转)
    java中继承与初始化顺序
    jsp 获取表单传过来的参数值含有中文字符
    转:父类私有变量是否被子类继承详细解说(答案:内存中存在,但sun公司定义为不继承)
  • 原文地址:https://www.cnblogs.com/tszr/p/11234312.html
Copyright © 2011-2022 走看看