zoukankan      html  css  js  c++  java
  • 吴裕雄--天生自然 PYTHON数据分析:糖尿病视网膜病变数据分析(完整版)

    # This Python 3 environment comes with many helpful analytics libraries installed
    # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
    # For example, here's several helpful packages to load in 
    
    import numpy as np # linear algebra
    import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
    
    # Input data files are available in the "../input/" directory.
    # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory
    import os, sys
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import skimage.io
    from skimage.transform import resize
    #from imgaug import augmenters as iaa
    from tqdm import tqdm
    import PIL
    from PIL import Image, ImageOps
    import cv2
    from sklearn.utils import class_weight, shuffle
    from keras.losses import binary_crossentropy
    from keras.applications.resnet50 import preprocess_input
    import keras.backend as K
    import tensorflow as tf
    from sklearn.metrics import f1_score, fbeta_score
    from keras.utils import Sequence
    from keras.utils import to_categorical
    from sklearn.model_selection import train_test_split
    
    WORKERS = 2
    CHANNEL = 3
    
    import warnings
    warnings.filterwarnings("ignore")
    IMG_SIZE = 512
    NUM_CLASSES = 5
    SEED = 77
    TRAIN_NUM = 1000 # use 1000 when you just want to explore new idea, use -1 for full train
    df_train = pd.read_csv('F:\kaggleDataSet\diabeticRetinopathy\trainLabels19.csv')
    df_test = pd.read_csv('F:\kaggleDataSet\diabeticRetinopathy\testImages19.csv')
    
    x = df_train['id_code']
    y = df_train['diagnosis']
    
    x, y = shuffle(x, y, random_state=SEED)
    train_x, valid_x, train_y, valid_y = train_test_split(x, y, test_size=0.15,stratify=y, random_state=SEED)
    print(train_x.shape, train_y.shape, valid_x.shape, valid_y.shape)
    train_y.hist()
    valid_y.hist()

    %%time
    fig = plt.figure(figsize=(25, 16))
    # display 10 images from each class
    for class_id in sorted(train_y.unique()):
        for i, (idx, row) in enumerate(df_train.loc[df_train['diagnosis'] == class_id].sample(5, random_state=SEED).iterrows()):
            ax = fig.add_subplot(5, 5, class_id * 5 + i + 1, xticks=[], yticks=[])
            path="F:\kaggleDataSet\diabeticRetinopathy\resized train 19\"+str(row['id_code'])+".jpg"
            image = cv2.imread(path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            image = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
            plt.imshow(image)
            ax.set_title('Label: %d-%d-%s' % (class_id, idx, row['id_code']) )

    %%time
    fig = plt.figure(figsize=(25, 16))
    for class_id in sorted(train_y.unique()):
        for i, (idx, row) in enumerate(df_train.loc[df_train['diagnosis'] == class_id].sample(5, random_state=SEED).iterrows()):
            ax = fig.add_subplot(5, 5, class_id * 5 + i + 1, xticks=[], yticks=[])
            path="F:\kaggleDataSet\diabeticRetinopathy\resized train 19\"+str(row['id_code'])+".jpg"
            image = cv2.imread(path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    #         image=cv2.addWeighted ( image, 0 , cv2.GaussianBlur( image , (0 ,0 ) , 10) ,-4 ,128)
            image = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
            plt.imshow(image, cmap='gray')
            ax.set_title('Label: %d-%d-%s' % (class_id, idx, row['id_code']) )

    dpi = 80 #inch
    
    # path=f"../input/aptos2019-blindness-detection/train_images/5c7ab966a3ee.png" # notice upper part
    path="F:\kaggleDataSet\diabeticRetinopathy\resized train 19\cd54d022e37d.jpg" # lower-right, this still looks not so severe, can be class3
    image = cv2.imread(path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    height, width = image.shape
    print(height, width)
    
    SCALE=2
    figsize = (width / float(dpi))/SCALE, (height / float(dpi))/SCALE
    
    fig = plt.figure(figsize=figsize)
    plt.imshow(image, cmap='gray')

    %%time
    fig = plt.figure(figsize=(25, 16))
    for class_id in sorted(train_y.unique()):
        for i, (idx, row) in enumerate(df_train.loc[df_train['diagnosis'] == class_id].sample(5, random_state=SEED).iterrows()):
            ax = fig.add_subplot(5, 5, class_id * 5 + i + 1, xticks=[], yticks=[])
            path="F:\kaggleDataSet\diabeticRetinopathy\resized train 19\"+str(row['id_code'])+".jpg"
            image = cv2.imread(path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    #         image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            image = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
            image=cv2.addWeighted ( image,4, cv2.GaussianBlur( image , (0,0) , IMG_SIZE/10) ,-4 ,128) # the trick is to add this line
    
            plt.imshow(image, cmap='gray')
            ax.set_title('Label: %d-%d-%s' % (class_id, idx, row['id_code']) )

    def crop_image1(img,tol=7):
        # img is image data
        # tol  is tolerance   
        mask = img>tol
        return img[np.ix_(mask.any(1),mask.any(0))]
    
    def crop_image_from_gray(img,tol=7):
        if img.ndim ==2:
            mask = img>tol
            return img[np.ix_(mask.any(1),mask.any(0))]
        elif img.ndim==3:
            gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
            mask = gray_img>tol
            check_shape = img[:,:,0][np.ix_(mask.any(1),mask.any(0))].shape[0]
            if (check_shape == 0): # image is too dark so that we crop out everything,
                return img # return original image
            else:
                img1=img[:,:,0][np.ix_(mask.any(1),mask.any(0))]
                img2=img[:,:,1][np.ix_(mask.any(1),mask.any(0))]
                img3=img[:,:,2][np.ix_(mask.any(1),mask.any(0))]
        #         print(img1.shape,img2.shape,img3.shape)
                img = np.stack([img1,img2,img3],axis=-1)
        #         print(img.shape)
            return img
    def load_ben_color(path, sigmaX=10):
        image = cv2.imread(path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        image = crop_image_from_gray(image)
        image = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
        image=cv2.addWeighted ( image,4, cv2.GaussianBlur( image , (0,0) , sigmaX) ,-4 ,128)
        return image
    %%time
    
    NUM_SAMP=7
    fig = plt.figure(figsize=(25, 16))
    for class_id in sorted(train_y.unique()):
        for i, (idx, row) in enumerate(df_train.loc[df_train['diagnosis'] == class_id].sample(NUM_SAMP, random_state=SEED).iterrows()):
            ax = fig.add_subplot(5, NUM_SAMP, class_id * NUM_SAMP + i + 1, xticks=[], yticks=[])
            path="F:\kaggleDataSet\diabeticRetinopathy\resized train 19\"+str(row['id_code'])+".jpg"
            image = load_ben_color(path,sigmaX=30)
            plt.imshow(image)
            ax.set_title('%d-%d-%s' % (class_id, idx, row['id_code']) )

    def circle_crop(img, sigmaX=10):   
        """
        Create circular crop around image centre    
        """    
        img = cv2.imread(img)
        img = crop_image_from_gray(img)    
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        height, width, depth = img.shape    
        x = int(width/2)
        y = int(height/2)
        r = np.amin((x,y))
        circle_img = np.zeros((height, width), np.uint8)
        cv2.circle(circle_img, (x,y), int(r), 1, thickness=-1)
        img = cv2.bitwise_and(img, img, mask=circle_img)
        img = crop_image_from_gray(img)
        img=cv2.addWeighted ( img,4, cv2.GaussianBlur( img , (0,0) , sigmaX) ,-4 ,128)
        return img 
    %%time
    ## try circle crop
    NUM_SAMP=7
    fig = plt.figure(figsize=(25, 16))
    for class_id in sorted(train_y.unique()):
        for i, (idx, row) in enumerate(df_train.loc[df_train['diagnosis'] == class_id].sample(NUM_SAMP, random_state=SEED).iterrows()):
            ax = fig.add_subplot(5, NUM_SAMP, class_id * NUM_SAMP + i + 1, xticks=[], yticks=[])
            path="F:\kaggleDataSet\diabeticRetinopathy\resized train 19\"+str(row['id_code'])+".jpg"
            image = circle_crop(path,sigmaX=30)
            plt.imshow(image)
            ax.set_title('%d-%d-%s' % (class_id, idx, row['id_code']) )

    dpi = 80 #inch
    path="F:\kaggleDataSet\diabeticRetinopathy\resized train 19\cd54d022e37d.jpg"
    image = load_ben_color(path,sigmaX=10)
    
    height, width = IMG_SIZE, IMG_SIZE
    print(height, width)
    
    SCALE=1
    figsize = (width / float(dpi))/SCALE, (height / float(dpi))/SCALE
    
    fig = plt.figure(figsize=figsize)
    plt.imshow(image, cmap='gray')

    %%time
    NUM_SAMP=10
    fig = plt.figure(figsize=(25, 16))
    for jj in range(5):
        for i, (idx, row) in enumerate(df_test.sample(NUM_SAMP,random_state=SEED+jj).iterrows()):
            ax = fig.add_subplot(5, NUM_SAMP, jj * NUM_SAMP + i + 1, xticks=[], yticks=[])
            path="F:\kaggleDataSet\diabeticRetinopathy\resized test 19\"+str(row['id_code'])+".jpg"
            image = load_ben_color(path,sigmaX=30)
            plt.imshow(image)
            ax.set_title('%d-%s' % (idx, row['id_code']) )

    %%time
    NUM_SAMP=10
    fig = plt.figure(figsize=(25, 16))
    for jj in range(5):
        for i, (idx, row) in enumerate(df_test.sample(NUM_SAMP,random_state=SEED+jj).iterrows()):
            ax = fig.add_subplot(5, NUM_SAMP, jj * NUM_SAMP + i + 1, xticks=[], yticks=[])
            path="F:\kaggleDataSet\diabeticRetinopathy\resized test 19\"+str(row['id_code'])+".jpg"
            image = load_ben_color(path,sigmaX=50)
            plt.imshow(image, cmap='gray')
            ax.set_title('%d-%s' % (idx, row['id_code']) )

    df_old = pd.read_csv('F:\kaggleDataSet\diabeticRetinopathy\trainLabels.csv')
    df_old.head()

    NUM_SAMP=10
    fig = plt.figure(figsize=(25, 16))
    for class_id in sorted(train_y.unique()):
        for i, (idx, row) in enumerate(df_old.loc[df_old['level'] == class_id].sample(NUM_SAMP, random_state=SEED).iterrows()):
            ax = fig.add_subplot(5, NUM_SAMP, class_id * NUM_SAMP + i + 1, xticks=[], yticks=[])
            path="F:\kaggleDataSet\diabeticRetinopathy\resized_train\"+row['image']+".jpeg"
            image = load_ben_color(path,sigmaX=30)
            plt.imshow(image)
            ax.set_title('%d-%d-%s' % (class_id, idx, row['image']) )

    NUM_SAMP=10
    fig = plt.figure(figsize=(25, 16))
    for class_id in sorted(train_y.unique()):
        for i, (idx, row) in enumerate(df_old.loc[df_old['level'] == class_id].sample(NUM_SAMP, random_state=SEED).iterrows()):
            ax = fig.add_subplot(5, NUM_SAMP, class_id * NUM_SAMP + i + 1, xticks=[], yticks=[])
            path="F:\kaggleDataSet\diabeticRetinopathy\resized_train\"+row['image']+".jpeg"
            image = cv2.imread(path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            image = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
            plt.imshow(image, cmap='gray')
            ax.set_title('%d-%d-%s' % (class_id, idx, row['image']) )

    dpi = 80 #inch
    
    path=f"F:\kaggleDataSet\diabeticRetinopathy\resized_train\31590_right.jpeg" # too many vessels?
    image = load_ben_color(path,sigmaX=30)
    # image = cv2.imread(path)
    # image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # image = crop_image1(image)
    # image = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
    # image=cv2.addWeighted ( image,4, cv2.GaussianBlur( image , (0,0) , IMG_SIZE/10) ,-4 ,128)
    
    height, width = IMG_SIZE, IMG_SIZE
    print(height, width)
    SCALE=1
    figsize = (width / float(dpi))/SCALE, (height / float(dpi))/SCALE
    fig = plt.figure(figsize=figsize)
    plt.imshow(image, cmap='gray')

    dpi = 80 #inch
    
    path_jpg=f"F:\kaggleDataSet\diabeticRetinopathy\resized_train_cropped\18017_left.jpeg" # too many vessels?
    path_png=f"F:\kaggleDataSet\diabeticRetinopathy\rescaled_train_896\18017_left.png" # details are lost
    image = cv2.imread(path_png)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
    
    image2 =  cv2.imread(path_jpg)
    image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
    image2 = cv2.resize(image2, (IMG_SIZE, IMG_SIZE))
    
    height, width = IMG_SIZE, IMG_SIZE
    print(height, width)
    
    SCALE=1/4
    figsize = (width / float(dpi))/SCALE, (height / float(dpi))/SCALE
    
    fig = plt.figure(figsize=figsize)
    ax = fig.add_subplot(2, 2, 1, xticks=[], yticks=[])
    ax.set_title('png format original' )
    plt.imshow(image, cmap='gray')
    ax = fig.add_subplot(2, 2, 2, xticks=[], yticks=[])
    ax.set_title('jpg format original' )
    plt.imshow(image2, cmap='gray')
    
    image = load_ben_color(path_png,sigmaX=30)
    image2 = load_ben_color(path_jpg,sigmaX=30)
    ax = fig.add_subplot(2, 2, 3, xticks=[], yticks=[])
    ax.set_title('png format transformed' )
    plt.imshow(image, cmap='gray')
    ax = fig.add_subplot(2, 2, 4, xticks=[], yticks=[])
    ax.set_title('jpg format transformed' )
    plt.imshow(image2, cmap='gray')

    import json
    import math
    import os
    
    import cv2
    from PIL import Image
    import numpy as np
    from keras import layers
    from keras.applications import DenseNet121
    from keras.callbacks import Callback, ModelCheckpoint
    from keras.preprocessing.image import ImageDataGenerator
    from keras.models import Sequential
    from keras.optimizers import Adam
    import matplotlib.pyplot as plt
    import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import cohen_kappa_score, accuracy_score
    import scipy
    from tqdm import tqdm
    
    %matplotlib inline
    train_df = pd.read_csv('F:\kaggleDataSet\diabeticRetinopathy\trainLabels19.csv')
    test_df = pd.read_csv('F:\kaggleDataSet\diabeticRetinopathy\testImages19.csv')
    print(train_df.shape)
    print(test_df.shape)
    test_df.head()

    def get_pad_width(im, new_shape, is_rgb=True):
        pad_diff = new_shape - im.shape[0], new_shape - im.shape[1]
        t, b = math.floor(pad_diff[0]/2), math.ceil(pad_diff[0]/2)
        l, r = math.floor(pad_diff[1]/2), math.ceil(pad_diff[1]/2)
        if is_rgb:
            pad_width = ((t,b), (l,r), (0, 0))
        else:
            pad_width = ((t,b), (l,r))
        return pad_width
    
    def preprocess_image(image_path, desired_size=224):
        im = Image.open(image_path)
        im = im.resize((desired_size, )*2, resample=Image.LANCZOS)
        return im
    N = test_df.shape[0]
    x_test = np.empty((N, 224, 224, 3), dtype=np.uint8)
    
    for i, image_id in enumerate(tqdm(test_df['id_code'])):
        x_test[i, :, :, :] = preprocess_image("F:\kaggleDataSet\diabeticRetinopathy\resized test 19\"+str(image_id)+".jpg")

    # model.summary()
    def load_image_ben_orig(path,resize=True,crop=False,norm255=True,keras=False):
        image = cv2.imread(path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)   
        image=cv2.addWeighted( image,4, cv2.GaussianBlur( image , (0,0) ,  10) ,-4 ,128)
        if norm255:
            return image/255
        elif keras:
            #see https://github.com/keras-team/keras-applications/blob/master/keras_applications/imagenet_utils.py for mode
            #see https://github.com/keras-team/keras-applications/blob/master/keras_applications/xception.py for inception,xception mode
            #the use of tf based preprocessing (- and / by 127 respectively) will results in [-1,1] so it will not visualize correctly (directly)
            image = np.expand_dims(image, axis=0)
            return preprocess_input(image)[0]
        else:
            return image.astype(np.int16)
        return image
    
    def transform_image_ben(img,resize=True,crop=False,norm255=True,keras=False):  
        image=cv2.addWeighted( img,4, cv2.GaussianBlur( img , (0,0) ,  10) ,-4 ,128)
        if norm255:
            return image/255
        elif keras:
            image = np.expand_dims(image, axis=0)
            return preprocess_input(image)[0]
        else:
            return image.astype(np.int16)
        return image
    def display_samples(df, columns=5, rows=2, Ben=True):
        fig=plt.figure(figsize=(5*columns, 4*rows))
        for i in range(columns*rows):
            image_path = df.loc[i,'id_code']
            path = f"F:\kaggleDataSet\diabeticRetinopathy\resized test 19\"+str(image_path)+".jpg"
            if Ben:
                img = load_image_ben_orig(path)
            else:
                img = cv2.imread(path)
                img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            fig.add_subplot(rows, columns, i+1)
            plt.imshow(img)
        plt.tight_layout()
    display_samples(test_df, Ben=False)
    display_samples(test_df, Ben=True)

    from keras import layers
    from keras.models import Model
    import keras.backend as K
    K.clear_session()
    densenet = DenseNet121(weights=None,include_top=False,input_shape=(None,None,3))
    GAP_layer = layers.GlobalAveragePooling2D()
    drop_layer = layers.Dropout(0.5)
    dense_layer = layers.Dense(5, activation='sigmoid', name='final_output')
    def build_model_sequential():
        model = Sequential()
        model.add(densenet)
        model.add(GAP_layer)
        model.add(drop_layer)
        model.add(dense_layer)
        return model
    modelA = build_model_sequential()
    modelA.load_weights('F:\kaggleDataSet\diabeticRetinopathy\dense_xhlulu_731.h5')
    modelA.summary()
    model = build_model_functional() # with pretrained weights, and layers we want
    model.summary()

    y_test = model.predict(x_test) > 0.5
    y_test = y_test.astype(int).sum(axis=1) - 1
    import seaborn as sns
    import cv2
    
    SIZE=224
    def create_pred_hist(pred_level_y,title='NoTitle'):
        results = pd.DataFrame({'diagnosis':pred_level_y})
        f, ax = plt.subplots(figsize=(7, 4))
        ax = sns.countplot(x="diagnosis", data=results, palette="GnBu_d")
        sns.despine()
        plt.title(title)
        plt.show()
    
    create_pred_hist(y_test,title='predicted level distribution in test set')

    def gen_heatmap_img(img, model0, layer_name='last_conv_layer',viz_img=None,orig_img=None):
        preds_raw = model0.predict(img[np.newaxis])
        preds = preds_raw > 0.5 # use the same threshold as @xhlulu original kernel
        class_idx = (preds.astype(int).sum(axis=1) - 1)[0]
        class_output_tensor = model0.output[:, class_idx]
        
        viz_layer = model0.get_layer(layer_name)
        grads = K.gradients(class_output_tensor ,viz_layer.output)[0] # gradients of viz_layer wrt output_tensor of predicted class
        pooled_grads=K.mean(grads,axis=(0,1,2))
        iterate=K.function([model0.input],[pooled_grads, viz_layer.output[0]])
        pooled_grad_value, viz_layer_out_value = iterate([img[np.newaxis]])
        for i in range(pooled_grad_value.shape[0]):
            viz_layer_out_value[:,:,i] *= pooled_grad_value[i]
        heatmap = np.mean(viz_layer_out_value, axis=-1)
        heatmap = np.maximum(heatmap,0)
        heatmap /= np.max(heatmap)
        viz_img=cv2.resize(viz_img,(img.shape[1],img.shape[0]))
        heatmap=cv2.resize(heatmap,(viz_img.shape[1],viz_img.shape[0]))
        heatmap_color = cv2.applyColorMap(np.uint8(heatmap*255), cv2.COLORMAP_SPRING)/255
        heated_img = heatmap_color*0.5 + viz_img*0.5
        print('raw output from model : ')
        print_pred(preds_raw)
        if orig_img is None:
            show_Nimages([img,viz_img,heatmap_color,heated_img])
        else:
            show_Nimages([orig_img,img,viz_img,heatmap_color,heated_img])
        plt.show()
        return heated_img
    def show_image(image,figsize=None,title=None):
        if figsize is not None:
            fig = plt.figure(figsize=figsize) 
        if image.ndim == 2:
            plt.imshow(image,cmap='gray')
        else:
            plt.imshow(image)
        if title is not None:
            plt.title(title)
    
    def show_Nimages(imgs,scale=1):
        N=len(imgs)
        fig = plt.figure(figsize=(25/scale, 16/scale))
        for i, img in enumerate(imgs):
            ax = fig.add_subplot(1, N, i + 1, xticks=[], yticks=[])
            show_image(img)
            
    def print_pred(array_of_classes):
        xx = array_of_classes
        s1,s2 = xx.shape
        for i in range(s1):
            for j in range(s2):
                print('%.3f ' % xx[i,j],end='')
            print('')
    NUM_SAMP=10
    SEED=77
    layer_name = 'relu' #'conv5_block16_concat'
    for i, (idx, row) in enumerate(test_df[:NUM_SAMP].iterrows()):
        path=f"F:\kaggleDataSet\diabeticRetinopathy\resized test 19\"+str(row["id_code"])+".jpg"
        ben_img = load_image_ben_orig(path)
        input_img = np.empty((1,224, 224, 3), dtype=np.uint8)
        input_img[0,:,:,:] = preprocess_image(path)
        print('test pic no.%d' % (i+1))
        _ = gen_heatmap_img(input_img[0],model, layer_name=layer_name,viz_img=ben_img)

    from albumentations import *
    import time
    
    IMG_SIZE = (224,224)
    
    '''Use case from https://www.kaggle.com/alexanderliao/image-augmentation-demo-with-albumentation/'''
    def albaugment(aug0, img):
        return aug0(image=img)['image']
    idx=8
    image1=x_test[idx]
    
    '''1. Rotate or Flip'''
    aug1 = OneOf([Rotate(p=0.99, limit=160, border_mode=0,value=0), Flip(p=0.5)],p=1)
    
    '''2. Adjust Brightness or Contrast'''
    aug2 = RandomBrightnessContrast(brightness_limit=0.45, contrast_limit=0.45,p=1)
    h_min=np.round(IMG_SIZE[1]*0.72).astype(int)
    h_max= np.round(IMG_SIZE[1]*0.9).astype(int)
    print(h_min,h_max)
    
    '''3. Random Crop and then Resize'''
    #w2h_ratio = aspect ratio of cropping
    aug3 = RandomSizedCrop((h_min, h_max),IMG_SIZE[1],IMG_SIZE[0], w2h_ratio=IMG_SIZE[0]/IMG_SIZE[1],p=1)
    
    '''4. CutOut Augmentation'''
    max_hole_size = int(IMG_SIZE[1]/10)
    aug4 = Cutout(p=1,max_h_size=max_hole_size,max_w_size=max_hole_size,num_holes=8 )#default num_holes=8
    
    '''5. SunFlare Augmentation'''
    aug5 = RandomSunFlare(src_radius=max_hole_size,num_flare_circles_lower=10,num_flare_circles_upper=20,p=1)
    
    '''6. Ultimate Augmentation -- combine everything'''
    final_aug = Compose([aug1,aug2,aug3,aug4,aug5],p=1)
    
    img1 = albaugment(aug1,image1)
    img2 = albaugment(aug1,image1)
    print('Rotate or Flip')
    show_Nimages([image1,img1,img2],scale=2)
    # time.sleep(1)
    
    img1 = albaugment(aug2,image1)
    img2 = albaugment(aug2,image1)
    img3 = albaugment(aug2,image1)
    print('Brightness or Contrast')
    show_Nimages([img3,img1,img2],scale=2)
    # time.sleep(1)
    
    img1 = albaugment(aug3,image1)
    img2 = albaugment(aug3,image1)
    img3 = albaugment(aug3,image1)
    print('Rotate and Resize')
    show_Nimages([img3,img1,img2],scale=2)
    print(img1.shape,img2.shape)
    # time.sleep(1)
    
    img1 = albaugment(aug4,image1)
    img2 = albaugment(aug4,image1)
    img3 = albaugment(aug4,image1)
    print('CutOut')
    show_Nimages([img3,img1,img2],scale=2)
    # time.sleep(1)
    
    img1 = albaugment(aug5,image1)
    img2 = albaugment(aug5,image1)
    img3 = albaugment(aug5,image1)
    print('Sun Flare')
    show_Nimages([img3,img1,img2],scale=2)
    # time.sleep(1)
    
    img1 = albaugment(final_aug,image1)
    img2 = albaugment(final_aug,image1)
    img3 = albaugment(final_aug,image1)
    print('All above combined')
    show_Nimages([img3,img1,img2],scale=2)
    print(img1.shape,img2.shape)

    aug_list = [aug5, aug2, aug3, aug4, aug1, final_aug]
    aug_name = ['SunFlare', 'brightness or contrast', 'crop and resized', 'CutOut', 'rotate or flip', 'Everything Combined']
    
    idx=8
    layer_name = 'relu' 
    for i in range(len(aug_list)):
        path=f"F:\kaggleDataSet\diabeticRetinopathy\resized test 19\"+str(row["id_code"])+".jpg"
        input_img = np.empty((1,224, 224, 3), dtype=np.uint8)
        input_img[0,:,:,:] = preprocess_image(path)
        aug_img = albaugment(aug_list[i],input_img[0,:,:,:])
        ben_img = transform_image_ben(aug_img)
        print('test pic no.%d -- augmentation: %s' % (i+1, aug_name[i]))
        _ = gen_heatmap_img(aug_img,model, layer_name=layer_name,viz_img=ben_img,orig_img=input_img[0])

  • 相关阅读:
    移动端跨平台方案对比:React Native、weex、Flutter
    js json处理 双引号
    jquery 发get post请求
    librtmp编译for android and ios 不要openssl
    mysql reset password重置密码
    pdf ppt word office转图片 教学白板
    使用阻塞队列实现生产者-消费者模型
    ThreadPoolExecutor线程池的分析和使用
    HashMap HashTable和ConcurrentHashMap的区别
    HTTP协议GET和POST请求的区别
  • 原文地址:https://www.cnblogs.com/tszr/p/11238752.html
Copyright © 2011-2022 走看看