zoukankan      html  css  js  c++  java
  • 吴裕雄--天生自然深度学习TensorBoard可视化:projector_MNIST

    import os
    import tensorflow as tf
    
    from tensorflow.examples.tutorials.mnist import input_data
    from tensorflow.contrib.tensorboard.plugins import projector
    
    INPUT_NODE = 784
    OUTPUT_NODE = 10
    LAYER1_NODE = 500
    
    def get_weight_variable(shape, regularizer):
        weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
        if regularizer != None: tf.add_to_collection('losses', regularizer(weights))
        return weights
    
    def inference(input_tensor, regularizer):
        with tf.variable_scope('layer1'):
            weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
            biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
            layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
    
        with tf.variable_scope('layer2'):
            weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
            biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
            layer2 = tf.matmul(layer1, weights) + biases
        return layer2
    
    BATCH_SIZE = 100
    LEARNING_RATE_BASE = 0.8
    LEARNING_RATE_DECAY = 0.99
    REGULARIZATION_RATE = 0.0001
    TRAINING_STEPS = 10000
    MOVING_AVERAGE_DECAY = 0.99
    
    LOG_DIR = 'F:\temp\log\'
    SPRITE_FILE = 'F:\temp\log\mnist_sprite.jpg'
    META_FIEL = "F:\temp\log\mnist_meta.tsv"
    TENSOR_NAME = "FINAL_LOGITS"
    def train(mnist):
        #  输入数据的命名空间。
        with tf.name_scope('input'):
            x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
            y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
        regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
        y = inference(x, regularizer)
        global_step = tf.Variable(0, trainable=False)
        
        # 处理滑动平均的命名空间。
        with tf.name_scope("moving_average"):
            variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
            variables_averages_op = variable_averages.apply(tf.trainable_variables())
       
        # 计算损失函数的命名空间。
        with tf.name_scope("loss_function"):
            cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
            cross_entropy_mean = tf.reduce_mean(cross_entropy)
            loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
        
        # 定义学习率、优化方法及每一轮执行训练的操作的命名空间。
        with tf.name_scope("train_step"):
            learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,staircase=True)
    
            train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
            with tf.control_dependencies([train_step, variables_averages_op]):
                train_op = tf.no_op(name='train')
        
        # 训练模型。
        with tf.Session() as sess:
            tf.global_variables_initializer().run()
            for i in range(TRAINING_STEPS):
                xs, ys = mnist.train.next_batch(BATCH_SIZE)
                _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
                if(i % 1000 == 0):
                    print("After %d training step(s), loss on training batch is %g." % (i, loss_value))                
            final_result = sess.run(y, feed_dict={x: mnist.test.images})
        return final_result
    def visualisation(final_result):
        y = tf.Variable(final_result, name = TENSOR_NAME)
        summary_writer = tf.summary.FileWriter(LOG_DIR)
    
        config = projector.ProjectorConfig()
        embedding = config.embeddings.add()
        embedding.tensor_name = y.name
    
        # Specify where you find the metadata
        embedding.metadata_path = META_FIEL
    
        # Specify where you find the sprite (we will create this later)
        embedding.sprite.image_path = SPRITE_FILE
        embedding.sprite.single_image_dim.extend([28,28])
    
        # Say that you want to visualise the embeddings
        projector.visualize_embeddings(summary_writer, config)
        
        sess = tf.InteractiveSession()
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver()
        saver.save(sess, os.path.join(LOG_DIR, "model"), TRAINING_STEPS)
        
        summary_writer.close()
    def main(argv=None): 
        mnist = input_data.read_data_sets("F:\TensorFlowGoogle\201806-github\datasets\MNIST_data", one_hot=True)
        final_result = train(mnist)
        visualisation(final_result)
    
    if __name__ == '__main__':
        main()

     

     

  • 相关阅读:
    实训9.4.前端:url、href、src,link和@import
    实训9.2.作业1.写一个10次循环,每次得到一个随机数,放进一个集合中,如果这个数已经存在集合中则跳过,最后打印集合中的数字.
    实训9.3. SQL——STRUCTURED QUERY LANGUAGE(结构化查询语言 )
    实训9.2.类集,Collection接口
    实训9.2.IDEA ——java编程语言开发的集成环境(集成开发工具)
    实训9.2. JDK——java语言的软件开发工具包(JAVA的运行环境(JVM+Java系统类库)和JAVA工具) 【java开发的核心】
    从键盘输入数据
    error
    ubuntu 14.04, Command "/usr/bin/python -u -c "import setuptools, tokenize;__file__='
    用Python徒手写线性回归
  • 原文地址:https://www.cnblogs.com/tszr/p/12098472.html
Copyright © 2011-2022 走看看