zoukankan      html  css  js  c++  java
  • 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:构建一个手写数字图片的神经网络

    from keras.datasets import mnist
    
    (train_images, train_labels),(test_images, test_labels) = mnist.load_data()
    print(train_images.shape)

    print(train_labels)

    print(test_images.shape)

    print(test_labels)

    digit = test_images[0]
    
    import matplotlib.pyplot as plt
    
    plt.figure()
    plt.imshow(digit, cmap=plt.cm.binary)
    plt.show()

    from keras import models
    from keras import layers
    
    network = models.Sequential()
    network.add(layers.Dense(512, activation='relu', input_shape=(28*28,)))
    network.add(layers.Dense(10, activation="softmax"))
    network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
    train_images = train_images.reshape((60000, 28*28))
    train_images = train_images.astype('float32') / 255
    
    test_images = test_images.reshape(10000, 28*28)
    test_images = test_images.astype('float32') / 255
    '''
    图片对应的标签是一个数值,用于表示图片内容。例如手写数字图片7,它对应的标签就是数字7,
    但网络擅长于处理向量类型的数据,因为我们要将图片区分成10个分类,因此我们将标签转换为
    含有10个元素的向量,对于数字7,我们将向量的第7个分量设置为1,其余设置为0
    '''
    from keras.utils import to_categorical
    
    print("before change:", test_labels[0])
    train_labels = to_categorical(train_labels)
    test_labels = to_categorical(test_labels)
    print("after change:", test_labels[0])

    '''
    epochs = 5表示使用输入的数据循环训练网络5次,batch_size表示网络每次从
    输入数据集中抽取出128份数据进行计算
    '''
    network.fit(train_images, train_labels, epochs=5, batch_size=128)

    '''
    让训练后的网络对测试数据进行预测,检验网络的预测准确率
    '''
    test_loss, test_acc = network.evaluate(test_images, test_labels, verbose=1)
    print('test_acc:', test_acc)

    from keras.datasets import mnist
    
    '''
    上面代码只是检测网络的预测准确率,为了更形象的展示网络识别能力,我们专门从测试数据集中
    抽取一张图片,让网络判断图片里面的数字
    '''
    (train_images, train_labels),(test_images, test_labels) = mnist.load_data()
    digit = test_images[1]
    plt.imshow(digit, cmap=plt.cm.binary)
    plt.show()
    
    #将抽取的图片输入网络,并让网络判断图片表示的数值
    test_images = test_images.reshape(10000, 28*28)
    res = network.predict(test_images)
    print(res[1])
    
    for i in range(res[1].shape[0]):
        if (res[1][i] == 1):
            print("the number for the picture is ", i)
            break

  • 相关阅读:
    用wifi调试android程序
    【翻译】Ext JS 4.1的性能
    index range scan,index fast full scan,index skip scan发生的条件
    柱状图(Histogram),绑定变量,bind peeking,cursor_sharing 之间的关系1 柱状图
    柱状图(Histogram),绑定变量,bind peeking,cursor_sharing 之间的关系3 柱状图与cursor_sharing
    JNI开发入门
    索引的Clustering Factor
    索引选择性
    列定义允许null,可能导致Index Hint提升不走索引
    柱状图(Histogram),绑定变量,bind peeking,cursor_sharing 之间的关系2 绑定变量与柱状图
  • 原文地址:https://www.cnblogs.com/tszr/p/12191727.html
Copyright © 2011-2022 走看看