zoukankan      html  css  js  c++  java
  • 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:卷积神经网络入门

    from keras import layers
    from keras import models
    
    model = models.Sequential()
    #首层接收2维输入
    model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)))
    model.add(layers.MaxPooling2D(2,2))
    model.add(layers.Conv2D(64, (3,3), activation='relu'))
    model.add(layers.MaxPooling2D((2,2)))
    model.add(layers.Conv2D(64, (3,3), activation='relu'))
    
    model.add(layers.Flatten())
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(10, activation='softmax'))
    model.summary()

    from keras.datasets import mnist
    from keras.utils import to_categorical
    
    (train_images, train_labels), (test_images, test_labels) = mnist.load_data()
    
    train_images = train_images.reshape((60000, 28, 28, 1))
    train_images = train_images.astype('float32') / 255
    
    test_images = test_images.reshape((10000, 28, 28, 1))
    test_images = test_images.astype('float32') / 255
    
    train_labels = to_categorical(train_labels)
    test_labels = to_categorical(test_labels)
    
    model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
    model.fit(train_images, train_labels, epochs = 5, batch_size=64)
    
    test_loss, test_acc = model.evaluate(test_images, test_labels)
    print(test_acc)

  • 相关阅读:
    常用命令-eval简析
    bash手册 之重定向原理与实现
    TCP/IP 编程
    SQL Server存储内幕系列
    ORACLE优化器RBO与CBO介绍总结
    24小时学通LINUX内核系列
    SQL Server 优化器+SQL 基础
    JAVA 强引用、软引用、弱引用、虚引用
    iOS 如何做才安全--逆向工程
    Python 基础学习
  • 原文地址:https://www.cnblogs.com/tszr/p/12232619.html
Copyright © 2011-2022 走看看