zoukankan      html  css  js  c++  java
  • 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:使用自动编解码网络实现黑白图片上色

    '''
    加载cifar10图片集并准备将图片进行灰度化
    '''
    from keras.datasets import cifar10
    
    def rgb2gray(rgb):
      #把彩色图转化为灰度图,如果当前像素点为[r,g,b],那么对应的灰度点为0.299*r+0.587*g+0.114*b
      return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])
    
    (x_train, _),(x_test, _) = cifar10.load_data()
    
    img_rows = x_train.shape[1]
    img_cols = x_train.shape[2]
    channels = x_train.shape[3]
    
    #将100张彩色原图集合在一起显示
    imgs = x_test[: 100]
    imgs = imgs.reshape((10, 10, img_rows, img_cols, channels))
    imgs = np.vstack([np.hstack(i) for i in imgs])
    plt.figure()
    plt.axis('off')
    plt.title('Original color images')
    plt.imshow(imgs, interpolation = 'none')
    plt.show()
    
    #将图片灰度化后显示出来
    x_train_gray = rgb2gray(x_train)
    x_test_gray = rgb2gray(x_test)
    imgs = x_test_gray[: 100]
    imgs = imgs.reshape((10, 10, img_rows, img_cols))
    imgs = np.vstack([np.hstack(i) for i in imgs])
    plt.figure()
    plt.axis('off')
    plt.title('gray images')
    plt.imshow(imgs, interpolation='none', cmap='gray')
    plt.show()
    
    #将彩色图片和灰度图正规化,也就是把像素点值设置到[0,1]之间
    x_train = x_train.astype('float32') / 255
    x_test = x_test.astype('float32') / 255
    
    x_train_gray = x_train_gray.astype('float32') / 255
    x_test_gray = x_test_gray.astype('float32') / 255
    
    '''
    将二维图片集合压扁为一维向量[num *row * col * 3],
    num 是图片数量
    '''
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, channels)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, channels)
    
    x_train_gray = x_train_gray.reshape(x_train_gray.shape[0], img_rows, img_cols,
                                       1)
    x_test_gray = x_test_gray.reshape(x_test_gray.shape[0], img_rows, img_cols, 1)

     

    input_shape = (img_rows, img_cols, 1)
    batch_size = 32
    kernel_size = 3
    #由于图片编码后需要保持图片物体与颜色信息,因此编码后的一维向量维度要变大
    latent_dim = 256
    layer_filters = [64, 128, 256]
    
    inputs = Input(shape=input_shape, name = 'encoder_input')
    x = inputs
    for filters in layer_filters:
      x = Conv2D(filters = filters, kernel_size = kernel_size, strides = 2,
                activation = 'relu', padding = 'same')(x)
      
      
    '''
    得到最后一层卷积层输出的数据格式,输入时格式为(32, 32, 3),
    经过三层卷积层后输出为(4, 4, 256)
    '''
    shape = K.int_shape(x)
    x = Flatten()(x)
    latent = Dense(latent_dim, name = 'latent_vector')(x)
    encoder = Model(inputs, latent, name = 'encoder')
    encoder.summary()

    latent_inputs = Input(shape=(latent_dim, ), name = 'decoder_input')
    '''
    将编码器输出的一维向量传入一个全连接网络层,输出的数据格式与上面shape变量相同,为[4, 4, 256]
    '''
    x = Dense(shape[1] * shape[2] * shape[3])(latent_inputs)
    x = Reshape((shape[1], shape[2], shape[3]))(x)
    '''
    解码器对应编码器做反向操作,因此它将数据经过三个反卷积层,卷积层的输出维度与编码器恰好相反,分别为
    256, 128, 64,每经过一个反卷积层,数据维度增加一倍,因此输入时数据维度为[4,4],经过三个反卷积层后
    维度为[32,32]恰好与图片格式一致
    '''
    for filters in layer_filters[::-1]:
      x = Conv2DTranspose(filters = filters, kernel_size = kernel_size,
                         strides = 2, activation = 'relu',
                         padding = 'same')(x)
    
    
    outputs = Conv2DTranspose(filters = channels, kernel_size = kernel_size, 
                              activation='relu', padding='same',
                              name = 'decoder_output')(x)
    print(K.int_shape(outputs))
    
    decoder = Model(latent_inputs, outputs, name = 'decoder')
    decoder.summary()

    from keras.callbacks import ReduceLROnPlateau, ModelCheckpoint
    import os
    
    autoencoder = Model(inputs, decoder(encoder(inputs)), name='autoencoder')
    autoencoder.summary()
    #如果经过5次循环训练后效果没有改进,那么就把学习率减少0.1的开方,通过调整学习率促使训练效果改进
    lr_reducer = ReduceLROnPlateau(factor = np.sqrt(0.1), cooldown = 0, patience = 5,
                                  verbose = 1, min_lr = 0.5e-6)
    save_dir = os.path.join(os.getcwd(), 'save_models')
    model_name = 'colorized_ae+model.{epoch:03d}.h5'
    if os.path.isdir(save_dir) is not True:
      os.makedirs(save_dir)
    filepath = os.path.join(save_dir, model_name)
    
    checkpoint = ModelCheckpoint(filepath = filepath, monitor = 'val_loss',
                                verbose = 1)
    autoencoder.compile(loss='mse', optimizer = 'adam')
    callbacks = [lr_reducer, checkpoint]
    autoencoder.fit(x_train_gray, x_train, validation_data = (x_test_gray, x_test),
                   epochs = 30,
                   batch_size = batch_size,
    
                    callbacks = callbacks)

    #将灰度图和上色后的图片显示出来
    x_decoded = autoencoder.predict(x_test_gray)
    imgs = x_decoded[:100]
    imgs = imgs.reshape((10, 10, img_rows, img_cols, channels))
    imgs = np.vstack([np.hstack(i) for i in imgs])
    plt.figure()
    plt.axis('off')
    plt.title('Colorized test images are: ')
    plt.imshow(imgs, interpolation='none')
    plt.show()

  • 相关阅读:
    vim使用基础
    linux基本命令随笔
    linux学习笔记
    中台建设随笔
    数据密集型系统响应优化
    TCP断开连接的问题
    多渠道接入系统总结
    关于实践的认识
    博客说明
    python下载图片的问题思考
  • 原文地址:https://www.cnblogs.com/tszr/p/12237938.html
Copyright © 2011-2022 走看看