zoukankan      html  css  js  c++  java
  • 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:TensorFlow与神经网络的实现

    import tensorflow as tf
    import numpy as np
    '''
    初始化运算图,它包含了上节提到的各个运算单元,它将为W,x,b,h构造运算部件,并将它们连接
    起来
    '''
    graph = tf.Graph()
    #一次tensorflow代码的运行都要初始化一个session
    session = tf.InteractiveSession(graph=graph)
    '''
    我们定义三种变量,一种叫placeholder,它对应输入变量,也就是上节计算图所示的圆圈部分,
    他们的值在计算开始进行时才确定,这里对应x;
    一种叫Variables,他们的值一开始就初始化,在后续运算中可以进行更改,这里对应W,b;
    一种叫immutable tensor,这里对应h,它的值不允许我们直接修改
    '''
    x = tf.placeholder(shape=[1, 10], dtype=tf.float32, name='x')
    #将W的各个分量初始化到[-0.1, 0.1]之间
    W = tf.Variable(tf.random_uniform(shape=[10,5], minval=-0.1, 
                                      maxval=0.1, dtype=tf.float32), name='W')
    #把b的各个分量初始化为0
    b = tf.Variable(tf.zeros(shape=[5], dtype=tf.float32), name='b')
    h = tf.nn.sigmoid(tf.matmul(x, W) + b)
     #使用run为各个变量分配内存并执行初始化操作
    tf.global_variables_initializer().run()
    h_eval = session.run(h, feed_dict={x: np.random.rand(1,10)})
    #结束时一定要关闭session
    session.close()
    '''
    先启动运算图和session
    '''
    graph = tf.Graph()
    session = tf.InteractiveSession(graph = graph)
    
    #将要读入文件名存储在一个队列中
    filenames = ['test%d.txt' %i for i in range(1,4)]
    #下面建立一个输入管道
    filename_queue = tf.train.string_input_producer(filenames, capacity = 3, 
                                                    shuffle = True, 
                                                    name = 'string_input_procucer')
    
    for f in filenames:
      if not tf.gfile.Exists(f):
        raise ValueError('Failed to find file: ' + f)
      else:
        print('File %s found.' %f)
    
    #构建reader将数据全部读入,tensorflow提供多种reader让我们读入不同格式数据
    reader = tf.TextLineReader()
    '''
    调用reader.read读入数据,它一次读入一行,read返回数据结构(key, value),其中key对应读入数据的
    文件名,value对应读入的一行数据
    '''
    key, value = reader.read(filename_queue, name='text_read_op')
    
    '''
    使用decoder将读入数据解码成指定数据结构,这里我们把读入的一行数据分解成多个数据列,由于每行包含
    10个数字,因此对应10个数据列,因为一个文本包含5行数据,三个文本总共包含15行,因此一列数据包含
    15个数字
    '''
    record_defaults = [[-1.0],[-1.0],[-1.0],[-1.0],[-1.0],[-1.0],
                       [-1.0],[-1.0],[-1.0],[-1.0],]
    col1, col2, col3, col4, col5, col6, col7, col8, col9, col10 = tf.decode_csv(value, record_defaults = record_defaults)
    
    #把数据列合在一起形成二维向量
    features = tf.stack([col1,col2,col3,col4,col5,col6,col7,col8,col9,col10])
    '''
    在训练网络时,我们往往需要很多训练数据,当数据量庞大时,一次将数据全部读入内存是不现实的,
    因此我们需要开辟一片缓存,然后将数据分批读入,capacity表示缓存最多能读入几条数据,
    batch_size表示一次将相应条数据进行读取处理,
    min_after_dequeue表示缓存中至少要读入几条数据,num_threads表示使用几个线程进行操作
    '''
    x = tf.train.shuffle_batch([features], batch_size=3, capacity=5,
                              name='data_batch', min_after_dequeue=1,
                              num_threads = 1)
    #启动输入管道的运行流程
    '''
    由于数据读入和预处理是一种非常耗时的工作,tensorflow会创建多个线程同时对数据进行读取和处理,
    coord对应所有处理线程的管理器,start_queue_runners则启动所有处理线程
    '''
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord, sess=session)
    
    W = tf.Variable(tf.random_uniform(shape=[10,5], minval=-0.1,
                                     maxval=0.1, dtype=tf.float32), name = 'W')
    b = tf.Variable(tf.zeros(shape=[5], dtype=tf.float32), name='b')
    h = tf.nn.sigmoid(tf.matmul(x, W) + b)
    
    tf.global_variables_initializer().run()
    
    for step in range(5):
      x_eval, h_eval = session.run([x, h])
      print('====step %d ====' %step)
      print('Evaluated data (x)')
      print(x_eval)
      print('Evaluated data (h)')
      print(h_eval)
      print('')
      
    #终止数据管道线程
    coord.request_stop()
    coord.join(threads)
    session.close()
    def  print_tensor(tensor):
      init = tf.global_variables_initializer()
      with tf.Session() as sess:
        sess.run(init)
        v = sess.run(tensor)
        print(v)  # will show you your variable.
    ref = tf.Variable(tf.constant([1,9,3,10,5], dtype=tf.float32), name='scatter_value')
    indices = [1,3]
    updates = tf.constant([2,4], dtype = tf.float32)
    tf_scatter_update = tf.scatter_update(ref, indices, updates,
                                         use_locking=None,
                                         name=None)
    
    print_tensor(tf_scatter_update)

    '''
    下面代码要构造一个4*3的二维向量,同时指定把updates变量对应的一维向量安置到indices指定位置,
    也就是把[1,1,1]作为4*3二维向量的第1行,把[2,2,2]作为4*3向量的第3行,其他行自动初始化为0,
    '''
    indices=[[1], [3]]
    updates = tf.constant([[1,1,1], [2,2,2]])
    shape = [4,3]
    tf_scatter_nd_1 = tf.scatter_nd(indices, updates, shape, name=None)
    print_tensor(tf_scatter_nd_1)

    '''
    构造一个4*3二维向量,然后把数值2插入到第1行第0列,
    把数值1插入到第3行第2列,其他值初始化为0
    '''
    indices = [[1,0], [3,2]]
    updates = tf.constant([2,1])
    shape = [4,3]
    tf_scatter_nd_2 = tf.scatter_nd(indices, updates, shape, name=None)
    print_tensor(tf_scatter_nd_2)

    '''
    下面代码把向量[1,2,3,4,5]中下标为1,4的分量提取出来,因此得到向量
    [2,5]
    '''
    params = tf.constant([1,2,3,4,5], dtype=tf.float32)
    indices = [1,4]
    tf_gather = tf.gather(params, indices, validate_indices = True, name = None)
    print_tensor(tf_gather)

    '''
    把二维向量中指定行提取出来
    '''
    params = tf.constant([[0,0,0], [1,1,1], [2,2,2],[3,3,3]])
    indices = [[0], [2]]
    tf_gather_nd = tf.gather_nd(params, indices, name=None)
    print_tensor(tf_gather_nd)

    '''
    构造一个4*4二维矩阵模拟图片
    '''
    x = tf.constant([[
        [[1], [2], [3], [4]],
        [[4], [3], [2], [1]],
        [[5], [6], [7], [8]],
        [[8], [7], [6], [5]]
    ]], dtype=tf.float32)
    
    #定义用于做卷积操作的小矩阵
    x_filter = tf.constant([
        [[[0.5]], [[1]]],
        [[[0.5]], [[1]]]
    ], dtype = tf.float32)
    
    '''
    把大矩阵切割成2*2小矩阵,然后与上面定义矩阵做乘机,
    然后每次向右或向下平移一个单位后再做对应小矩阵的乘机运算
    '''
    #定义一次平移距离,四个分量分别为batch_stride,height_stride,width_stride,channles_stride]
    x_strides = [1,1,1,1]
    x_padding = 'VALID'
    x_conv = tf.nn.conv2d(input = x, filter = x_filter,
                         strides = x_strides, padding = x_padding)
    print_tensor(x_conv)

    x = tf.constant([[
        [[1], [2], [3], [4]],
        [[4], [3], [2], [1]],
        [[5], [6], [7], [8]],
        [[8], [7], [5], [6]]
    ]], dtype = tf.float32)
    
    '''
    把矩阵分割成2*2小矩阵
    '''
    x_ksize = [1, 2, 2 ,1]
    #做max pooling 时每次沿水平和竖直方向挪动2个单位
    x_stride = [1, 2, 2, 1]
    x_padding = 'VALID'
    
    x_pool = tf.nn.max_pool(value = x, ksize = x_ksize,
                           strides = x_stride, padding = x_padding)
    print_tensor(x_pool)

    '''
    和方差:
    MSE = (1^2 + 2^2 + 3^2 + 4^2) / 4 = 15
    '''
    x = tf.constant([[1,2], [3,4]], dtype = tf.float32)
    mse = tf.nn.l2_loss(x)
    print_tensor(mse)
    
    '''
    cross entropy 
    H = -y*log(y') - (1-y)*log(1-y')
    '''
    y = tf.constant([[1,0],[0,1]], dtype = tf.float32)
    y_hat = tf.constant([[3,2], [2,5]], dtype = tf.float32)
    H = tf.nn.softmax_cross_entropy_with_logits_v2(logits = y_hat, labels = y)
    print_tensor(H)

    '''
    使用梯度下降法对函数y=x^2求最小值,设置学习率为0.1
    '''
    x = tf.Variable(tf.constant(2.0, dtype=tf.float32), name = 'x')
    y = x ** 2
    minimize_op = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(y)
    init = tf.global_variables_initializer()
    with tf.Session() as session:
      session.run(init)
      for i in range(1000):
        session.run(minimize_op)
        print("step: ", i, " x: ", session.run(x), " y: ", session.run(y))
            

    import tensorflow as tf
    
    '''
    首先将x 初始化为1,然后有两条语句,第一条作用是实现 x = x + 3, 第二条作用是实现 z = x * 4,
    如果是串行执行,那么执行第一句后x变成4,执行第二句后z变成16,但tensorflow并不串行执行,
    所以最终得到结果与上面预想不同
    '''
    x = tf.Variable(tf.constant(1.0), name = 'x')
    x_assign = tf.assign(x, x+3)
    z = x*4
    
    init = tf.global_variables_initializer()
    with tf.Session() as session:
      session.run(init)
      print('z = ', session.run(z))
      print('x = ', session.run(x))

    import tensorflow as tf
    
    '''
    让x = x + 3 与 z = x * 4串行执行
    '''
    x = tf.Variable(tf.constant(1.0), name = 'x')
    
    init = tf.global_variables_initializer()
    with tf.Session() as session:
      session.run(init)
      with tf.control_dependencies([tf.assign(x, x+4)]):
        z = x * 4
      print('z = ', session.run(z))
      print('x = ', session.run(x))

    def  simple_computation(w):
      x = tf.Variable(tf.constant(2.0, shape = None, dtype = tf.float32), 
                      name = 'simple_computation_x')
      y = tf.Variable(tf.constant(3.0, shape = None, dtype = tf.float32), 
                      name = 'simple_computation_y')
      z = x * 2 + y**3
      return z
      
    with tf.Session() as session:
      z = simple_computation(2)
      init = tf.global_variables_initializer()
      session.run(init)
      res = session.run(z)
      print('simple computation result : ', res)

    with tf.Session() as session:
      for i in range(10):
        z = simple_computation(2)
        init = tf.global_variables_initializer()
        session.run(init)
        res = session.run(z)
      
    for n in tf.get_default_graph().as_graph_def().node:
      if "simple_computation_x" in n.name:
        print(n.name)

    import tensorflow as tf
    
    def  simple_computation_reuse1(w):
      #把tf.Variable换成tf.get_variable
      x = tf.get_variable('x', initializer = tf.constant(1.0, 
                                                         shape = None, 
                                                         dtype = tf.float32))
      y = tf.get_variable('y', initializer = tf.constant(2.0,
                                                        shape = None,
                                                        dtype = tf.float32))
      z = x * w + y**2
      return z
    
    def  simple_computation_reuse2(w):
      '''
      变量重用时初始化方式必须一致,例如上面变量x初始化值是1.0,重用时它的初始哈值也必须是1.0
      '''
      x = tf.get_variable('x', initializer = tf.constant(1.0,
                                                        shape = None,
                                                        dtype = tf.float32))
      y = tf.get_variable('y', initializer = tf.constant(2.0,
                                                        shape = None,
                                                        dtype = tf.float32))
      z = w*x*y
      return z
    '''
    设定一个命名空间,在该空间里给定名字的变量只分配一次内存,我们可以通过变量名多次获取变量内存,
    这样可以防止一个变量分配多次内存
    '''
    with tf.variable_scope('reuse_scope_exampleA', reuse = tf.AUTO_REUSE) as scope:
      #reuse_scope_exampleA/x,reuse_scope_exampleA/y
      z1 = simple_computation_reuse1(tf.constant(1.0, dtype = tf.float32))
    
    with tf.variable_scope(scope, reuse = tf.AUTO_REUSE) as scope1:
      with tf.name_scope(scope1.original_name_scope):
        #下面调用会重用reuse_scope_exampleA/x,reuse_scope_exampleA/y
        z2 = simple_computation_reuse2(z1)
        
    #再次重用my_reuse_scopeA/x,my_reuse_scopeA/y
    with tf.variable_scope(scope, reuse = tf.AUTO_REUSE) as scope3:
      with tf.name_scope(scope3.original_name_scope):
        zz1 = simple_computation_reuse1(tf.constant(1.0, dtype = tf.float32))
        zz2 = simple_computation_reuse2(zz1)
    with tf.variable_scope('reuse_scope_exampleB', reuse = tf.AUTO_REUSE):
      #下面调用创建变量reuse_scope_exampleB/x,reuse_scope_exampleB/y
      a1 = simple_computation_reuse1(tf.constant(1.0, dtype = tf.float32))
    with tf.variable_scope('my_reuse_scopeB/', reuse = tf.AUTO_REUSE):
      #下面调用重用reuse_scope_exampleB/x, reuse_scope_exampleB/y
      a2 = simple_computation_reuse2(a1)
    with  tf.Session() as session:
      init = tf.global_variables_initializer()
      session.run(init)
      res = session.run([z1, z2, z2])
        
    
    #把含有scope或scopeB的变量打印出,看看他们是否只有一份
    for n in tf.get_default_graph().as_graph_def().node:
      if "reuse_scope_exampleA" in n.name or 'reuse_scope_exampleB' in n.name:
        print(n.name)

    !pip install keras

    import tensorflow as tf
    from keras.datasets import mnist
    import numpy as np
    
    (train_images, train_labels), (test_images, test_labels) = mnist.load_data()
    train_num = train_images.shape[0]
    rows = train_images.shape[1]
    cols = train_images.shape[2]
    test_num = test_images.shape[0]
    
    train_images = train_images.reshape(train_num, rows * cols)
    test_images = test_images.reshape(test_num, rows * cols)
    
    train_images = (train_images - np.mean(train_images)) / np.std(train_images)
    test_images = (test_images - np.mean(test_images)) / np.std(test_images)
    WEIGHTS = "weights"
    BIAS = "bias"
    
    batch_size = 100
    img_width, img_height = 28, 28
    input_size = img_width * img_height
    num_labels = 10
    tf.reset_default_graph()
    
    #定义接收图片和图片标签的向量
    tf_inputs = tf.placeholder(shape=[batch_size, input_size], dtype = tf.float32,
                              name = 'inputs')
    tf_labels = tf.placeholder(shape=[batch_size, num_labels], dtype = tf.float32,
                              name = 'labels')
    '''
    我们构建的网络有三层,前两层是全连接层,最后一层含有10个节点,每个节点输出当前图片对应数字的概率
    '''
    def  define_networks():
      with tf.variable_scope('layer1'):
        '''
        第一层网络有500个节点,由于一张图片相当于28*28的二维数组,因此输入层和第一层网络在全连接
        情况下,有(28*28 = 784)*500个链路参数,他们对应一个[784, 500]的二维向量
        '''
        tf.get_variable(WEIGHTS, shape=[input_size, 500], 
                        initializer = tf.random_uniform_initializer(0, 0.02))
        tf.get_variable(BIAS, shape=[500], 
                        initializer = tf.random_uniform_initializer(0, 0.01))
        
      with tf.variable_scope('layer2'):
        '''
        第二层网络有250个节点,第一层与第二层在全连接情况下有500*250个链路参数,对应[500, 250]
        的二维向量
        '''
        tf.get_variable(WEIGHTS, shape = [500, 250],
                       initializer = tf.random_uniform_initializer(0, 0.02))
        tf.get_variable(BIAS, shape = [250], 
                       initializer = tf.random_uniform_initializer(0, 0.01))
        
      with tf.variable_scope('layer3'):
        '''
        第三层只有10个节点,第二层与第三层在全连接情况下有250*10个链路参数,对应[250,10]
        的二维向量
        '''
        tf.get_variable(WEIGHTS, shape = [250, 10], 
                       initializer = tf.random_uniform_initializer(0, 0.02))
        tf.get_variable(BIAS, shape = [10],
                       initializer = tf.random_uniform_initializer(0, 0.01))
        
    '''
    设置网络层的激活函数
    '''
    def  define_activations(x):
      #第一层使用relu激活函数
      with tf.variable_scope('layer1', reuse = tf.AUTO_REUSE):
        w, b = tf.get_variable(WEIGHTS), tf.get_variable(BIAS)
        tf_h1 = tf.nn.relu(tf.matmul(x, w) + b, name = 'hidden1')
        
      with tf.variable_scope('layer2', reuse = tf.AUTO_REUSE):
        #第二层使用relu激活函数
        w, b = tf.get_variable(WEIGHTS), tf.get_variable(BIAS)
        tf_h2 = tf.nn.relu(tf.matmul(tf_h1, w) + b, name = 'hidden2')
        
      with tf.variable_scope('layer3', reuse = tf.AUTO_REUSE):
        #第三层使用先不使用激活,直接把结果输出
        w, b = tf.get_variable(WEIGHTS), tf.get_variable(BIAS)
        tf_logits = tf.nn.bias_add(tf.matmul(tf_h2, w), b, name = 'logits')
        
      return tf_logits
    define_networks()
    
    logits = define_activations(tf_inputs)
    #定义损失函数
    softmax = tf.nn.softmax_cross_entropy_with_logits_v2(logits = logits, labels = 
                                                        tf_labels)
    tf_loss = tf.reduce_mean(softmax)
    #使用梯度下降法调整网络参数
    tf_loss_minimize = tf.train.MomentumOptimizer(momentum=0.9, 
                                                  learning_rate = 0.01).minimize(tf_loss)
    #定义网络对输入图片的判断结果
    tf_predictions = tf.nn.softmax(define_activations(tf_inputs))
    #启动训练流程
    session = tf.InteractiveSession()
    tf.global_variables_initializer().run()
    
    NUM_EPOCHS = 50
    def  accuracy(predictions, labels):
      #统计判断结果的准确率
      return np.sum(np.argmax(predictions, axis = 1).flatten() == labels.flatten()) / batch_size
    
    test_accuracy_over_time = []
    train_loss_over_time = []
    
    for epoch in range(NUM_EPOCHS):
      train_loss = []
      for step in range(train_images.shape[0] // batch_size):
        #将标签转换为One-hot-vector
        labels_one_hot = np.zeros((batch_size, num_labels), dtype = np.float32)
        labels_one_hot[np.arange(batch_size), 
                       train_labels[step*batch_size: (step+1)*batch_size]] = 1.0
        
        if epoch == 0 and step == 0:
          print('one hot labels:')
          print(labels_one_hot[:10])
          print()
        
        #执行训练流程
        loss, _ = session.run([tf_loss, tf_loss_minimize], feed_dict = {
            tf_inputs: train_images[step*batch_size : (step+1)*batch_size, :],
            tf_labels: labels_one_hot
        })
        train_loss.append(loss)
      
      test_accuracy = []
      #测试网络训练效果
      for step in range(test_images.shape[0] // batch_size):
        test_predictions = session.run(tf_predictions ,
                                       feed_dict = {tf_inputs: 
                                       test_images[step*batch_size : (step+1)*batch_size, :]})
        
        batch_test_accuracy = accuracy(test_predictions, test_labels[step*batch_size:
                                                                    (step+1)*batch_size])
        test_accuracy.append(batch_test_accuracy)
      
      print("Average train loss for the %d epoch: %.3f
    " % (epoch+1, np.mean(train_loss)))
      train_loss_over_time.append(np.mean(train_loss))
      print('	Average test accuracy for the %d epoch: %.2f
    ' % (epoch+1, np.mean(test_accuracy) * 100.0))
      test_accuracy_over_time.append(np.mean(test_accuracy)*100)
      
    session.close()

     

    import matplotlib.pyplot as plt
    
    x_axis = np.arange(len(train_loss_over_time))
    
    fig, ax = plt.subplots(nrows=1, ncols=2)
    fig.set_size_inches(w=25,h=5)
    ax[0].plot(x_axis, train_loss_over_time)
    ax[0].set_xlabel('Epochs',fontsize=18)
    ax[0].set_ylabel('Average train loss',fontsize=18)
    ax[0].set_title('Training Loss over Time',fontsize=20)
    ax[1].plot(x_axis, test_accuracy_over_time)
    ax[1].set_xlabel('Epochs',fontsize=18)
    ax[1].set_ylabel('Test accuracy',fontsize=18)
    ax[1].set_title('Test Accuracy over Time',fontsize=20)
    fig.savefig('mnist_stats.jpg')

  • 相关阅读:
    Netty 中的内存分配浅析-数据容器
    你想了解的 HTTPS 都在这里
    加解密算法分析
    HTTP 协议详解(二)
    HTTP 协议详解
    Netty 中的内存分配浅析
    TCP / IP 精彩回顾-必看
    Netty 中的消息解析和编解码器
    Netty 中的粘包和拆包
    python 类中方法总结 --- 实例方法、类方法、静态方法
  • 原文地址:https://www.cnblogs.com/tszr/p/12269912.html
Copyright © 2011-2022 走看看