2019HDU多校第一场1001 BLANK (DP)
题意:构造一个长度为n(n<=10)的序列,其中的值域为{0,1,2,3}存在m个限制条件,表示为 l r x意义为[L,R]区间里最多能有x个不同的数字,计算序列构造方案数
思路
1.首先考虑最暴力的做法,直接dfs暴力构造,碰到区间的右端点就开始判断当前构造是否满足,如果不满足就回溯,很显然,复杂度爆炸O(4^n)
2.考虑怎么优化暴力算法,从(n<=100)不难猜出这是一个dp,考虑这种字符串构造形式的dp,肯定是一位一位有序构造,所以dp肯定是有序地扫一遍,所以进入了如何定义状态的阶段,我们注意到,一个区间里面数的种类的不同,只与当前点分别和最近的{0,1,2,3}的距离有关,如果在限制区间里面则种类+1,反之亦然。所以我们不难想到可以定义出状态dp[i][j][k][t][pos],表示{0,1,2,3}在Pos位置之前离pos最近分别在i,j,k,t,这样我们得出状态转移方程有(分别为填0,1,2,3)
dp[i][j][k][pos][pos]+=dp[i][j][k][t][pos-1]
dp[i][pos][k][t][pos]+=dp[i][j][k][t][pos-1]
dp[i][pos][k][t][pos]+=dp[i][j][k][t][pos-1]
dp[pos][j][k][t][pos]+=dp[i][j][k][t][pos-1]
我们可以得出,时间复杂度(O(n^5))空间复杂度(O(n^5))两者都不行,所以我们需要考虑如何优化,从状态转移方程中我们可以看到在5维中总有一对pos是相同的,所以这一维可以不用占时间复杂度和空间复杂度,并且可以用数组滚动,所以空间复杂度可以为(O(n^3)),时间复杂度为(O(n^4))至此,已经满足题意了
但是我们试图对以上状态转移进行优化时,我们会发现pos到底和哪一位一样?这很难处理。因为pos既代表了一位数的位数又代表了当前位置,这样如何表达呢?我们思考一下,pos相对于i,j,k有什么性质?pos每次都是最大的,同时填{0,1,2,3}我们并不关心他的具体取值,只关系他的分布,所以取什么值都是对称的,例如0,1,2,3如果满足条件,那么3,2,1,0也一定满足条件,所以我们可不可以仅从分布位置的大小关系入手?设置i<j<k<t那么转移就变成了
dp[i][j][pos][now]+=dp[i][j][k][pre]
dp[i][k][pos-1][now]+=dp[i][j][k][pre]
dp[j][k][pos-1][now]+=dp[i][j][k][pre]
dp[i][j][pos-1][now]+=dp[i][j][k][pre]
我们分别解释第一个状态和第二个状态。首先我们可以知道,上一个状态最大的肯定是pos-1也就是当前状态的k=pos-1因为当前位置是pos,第一个状态表示把pos位置填上和k相同的值。而第二个状态表示把pos填上和j相同的值,那么上一个k可以就是pos-1变成了次大值,最大值变成了pos也就是当前填的值。(每个状态里面都隐藏了当前的最大t一定是位置,以此好理解转移)
这样我们就还剩下了限制条件,我们只要把每个限制条件放进以右端点值为key的数组中,每次dp完一个位置后,看满不满足限制条件,不满足就置为0即可,因为状态的良好定义,使得判断极为简单
思考
碰到构造计数类dp的时候,通常是从左到右dp,我们首先考虑如何判断限制条件,再以此设计状态,状态的定义要可以很方便得判断出是否满足限制条件,对于不满足限制条件的状态,我们可以在dp中使dp数组置0来阻止其继续递推。设计状态的时候从最暴力逐渐优化,思路不能乱,不能乱了方寸,否则dp的难度一高,状态一复杂,就会导致心态爆炸,代码写炸。
Reference
https://blog.csdn.net/Ratina/article/details/97237438 顺便%一下这位大佬
#include<bits/stdc++.h>
#include<vector>
#include<algorithm>
using namespace std;
#define pb push_back
#define F first
#define S second
#define mkp make_pair
const int mod=998244353;
const int maxn=100+4;
int dp[maxn][maxn][maxn][2];
vector< pair<pair<int,int>,int> >v[maxn];
int t,n,m;
int ans=0;
int add(int x,int y){
return (1ll*x+y)%mod;
}
int main(){
scanf("%d",&t);
while(t--){
ans=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
v[i].clear();
for(int i=0;i<m;i++){
int l,r,x;
scanf("%d%d%d",&l,&r,&x);
v[r].pb(mkp(mkp(l,r),x));
}
for(int k=0;k<n;k++)
for(int j=0;j<max(1,k);j++)
for(int i=0;i<max(1,j);i++)dp[i][j][k][1]=dp[i][j][k][0]=0;
dp[0][0][0][0]=1;
int now=1;
for(int pos=1;pos<=n;pos++){
for(int k=0;k<max(pos-1,1);k++){
for(int j=0;j<max(1,k);j++){
for(int i=0;i<max(1,j);i++){
dp[i][j][k][now]=add(dp[i][j][k][now],dp[i][j][k][now^1]);
dp[i][j][pos-1][now]=add(dp[i][j][pos-1][now],dp[i][j][k][now^1]);
dp[j][k][pos-1][now]=add(dp[j][k][pos-1][now],dp[i][j][k][now^1]);
dp[i][k][pos-1][now]=add(dp[i][k][pos-1][now],dp[i][j][k][now^1]);
dp[i][j][k][now^1]=0;
}
}
}
for(int k=0;k<max(pos,1);k++){
for(int j=0;j<max(1,k);j++){
for(int i=0;i<max(1,j);i++){
for(auto&p:v[pos]){
if((i>=p.F.F)+(j>=p.F.F)+(k>=p.F.F)+1!=p.S){
dp[i][j][k][now]=0;
}
}
}
}
}
now^=1;
}
for(int k=0;k<max(1,n);k++){
for(int j=0;j<max(1,k);j++){
for(int i=0;i<max(1,j);i++){
ans=add(ans,dp[i][j][k][now^1]);
}
}
}
printf("%d
",ans);
}
return 0;
}