Codeforces Round #626 D. Present 异或按位确定 +二分or双指针
题意
给n个数,求他们两两的和的异或结果 n(4e5) 值域(1e7)
思路
异或问题一般都是按位确定,那么怎么确定第k位的值呢。首先第k位的值只和[1,k]位有关系,也就是说只跟a[i]本来在这一位有的数和进位有关系。那么怎么处理和的问题呢。首先我们只考虑[1..k]位,那么他们的和记为sum,如果sum在第k位有值 那么sum的值为 (2^k+x)因为只考虑[1..k]位所以a的最大值为(2^{k+1}-1) sum的最大值也就是(2^{k+2}-2)所以我们可以得到当([2^k,2^{k+1}-1])以及[2{k+1}+2{k}-1,2^{k+2}-2]如果sum落在这两个区间上,那么它的第k位就是1的。我们要算的是有几对和是位于这两个范围内的,很显然,我们可以先对a数组mod(2^{k+1})排序后利用二分找范围。这样复杂度就是0(nlognlogc)同样的 因为满足单调性,也可以运用双指针这样就少了一个log变成O(nlogc)
二分
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define F first
#define S second
#define mkp make_pair
#define pii pair<int,int>
typedef long long ll;
#define int ll
const int inf=0x3f3f3f3f;
const int maxn=4e5+5;
const int mod= 998244353;
int b[maxn],a[maxn];
int n;
int solve(int x,int y,int z){
if(y<x)return 0;
int l=lower_bound(b+1,b+1+n,x)-b;
int r=upper_bound(b+1,b+1+n,y)-b;
//cout<<x<<" fuck"<<y<<" "<<(n-l+1)-(n-r+1)<<endl;
int flag=0;
if(z>=x&&z<=y)flag=1;
return (n-l+1)-(n-r+1)-flag;
}
int32_t main(){
scanf("%lld",&n);
int up=0;
for(int i=1;i<=n;i++)scanf("%lld",&a[i]),up=max(up,a[i]);
int ans=0;
for(int k=1;k<=2e7;k<<=1){
for(int j=1;j<=n;j++)b[j]=a[j]%(k*2ll);
sort(b+1,b+1+n);
int sum=0;
for(int j=1;j<=n;j++){
// cout<<solve((1<<(k-1))-b[j],(1<<k)-b[j]-1)<<" "<<solve((1<<(k-1))+(1<<(k))-b[j],(1<<(k+1))-2-b[j]);
//cout<<endl;
// cout<<j<<" "<<((1<<(k-1))-b[j])<<" "<<((1<<k)-b[j]-1)<<" "<<solve((1<<(k-1))-b[j],(1<<k)-b[j]-1)<<endl;
//cout<<j<<" "<<((1<<(k-1))+(1<<(k))-b[j])<<" "<<((1<<(k+1))-2-b[j])<<" "<<solve((1<<(k-1))+(1<<(k))-b[j],(1<<(k+1))-2-b[j])<<endl;
sum+=solve(k-b[j],2ll*k-b[j]-1,b[j]);
sum+=solve(2ll*k+k-b[j],k*4ll-2-b[j],b[j]);
}
sum/=2;
// cout<<sum<<endl;
if(sum&1)ans^=(k);
}
printf("%lld
",ans);
return 0;
}
双指针
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define F first
#define S second
#define mkp make_pair
#define pii pair<int,int>
typedef long long ll;
const int inf=0x3f3f3f3f;
const int maxn=4e5+5;
const int mod= 998244353;
int b[maxn],a[maxn];
int n;
int main(){
scanf("%d",&n);
int up=0;
for(int i=1;i<=n;i++)scanf("%d",&a[i]),up=max(up,a[i]);
int ans=0;
for(int k=1;k<=2e7;k<<=1){
for(int j=1;j<=n;j++)b[j]=a[j]%(k*2ll);
sort(b+1,b+1+n);
long long sum=0;
int p1=1,p2=1,p3=1;
for(int j=n;j>=1;j--){
while(p1<=n&&b[p1]+b[j]<k)p1++;
while(p2<=n&&b[p2]+b[j]<k+k)p2++;
while(p3<=n&&b[p3]+b[j]<k+k+k)p3++;
sum+=max(0,min(j,p2)-p1);
sum+=max(0,j-p3);
}
if(sum&1)ans^=(k);
}
printf("%d
",ans);
return 0;
}