zoukankan      html  css  js  c++  java
  • python 图像处理中二值化方法归纳总结

    python图像处理二值化方法

    在用python进行图像处理时,二值化是非常重要的一步,现总结了自己遇到过的 6种 图像二值化的方法(当然这个绝对不是全部的二值化方法,若发现新的方法会继续新增)。

    1. opencv 简单阈值 cv2.threshold

    2. opencv 自适应阈值 cv2.adaptiveThreshold (自适应阈值中计算阈值的方法有两种:mean_c 和 guassian_c ,可以尝试用下哪种效果好)

    3. Otsu's 二值化

    例子:

    来自 : OpenCV-Python 中文教程

     1 import cv2
     2 import numpy as np
     3 from matplotlib import pyplot as plt
     4 
     5 img = cv2.imread('scratch.png', 0)
     6 # global thresholding
     7 ret1, th1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
     8 # Otsu's thresholding
     9 th2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
    10 # Otsu's thresholding
    11 # 阈值一定要设为 0 !
    12 ret3, th3 = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    13 # plot all the images and their histograms
    14 images = [img, 0, th1, img, 0, th2, img, 0, th3]
    15 titles = [
    16     'Original Noisy Image', 'Histogram', 'Global Thresholding (v=127)',
    17     'Original Noisy Image', 'Histogram', "Adaptive Thresholding",
    18     'Original Noisy Image', 'Histogram', "Otsu's Thresholding"
    19 ]
    20 # 这里使用了 pyplot 中画直方图的方法, plt.hist, 要注意的是它的参数是一维数组
    21 # 所以这里使用了( numpy ) ravel 方法,将多维数组转换成一维,也可以使用 flatten 方法
    22 # ndarray.flat 1-D iterator over an array.
    23 # ndarray.flatten 1-D array copy of the elements of an array in row-major order.
    24 for i in range(3):
    25     plt.subplot(3, 3, i * 3 + 1), plt.imshow(images[i * 3], 'gray')
    26     plt.title(titles[i * 3]), plt.xticks([]), plt.yticks([])
    27     plt.subplot(3, 3, i * 3 + 2), plt.hist(images[i * 3].ravel(), 256)
    28     plt.title(titles[i * 3 + 1]), plt.xticks([]), plt.yticks([])
    29     plt.subplot(3, 3, i * 3 + 3), plt.imshow(images[i * 3 + 2], 'gray')
    30     plt.title(titles[i * 3 + 2]), plt.xticks([]), plt.yticks([])
    31 plt.show()

    结果图:

    4. skimage niblack阈值

    5. skimage sauvola阈值 (主要用于文本检测)

    例子:

    https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_niblack_sauvola.html

     1 import matplotlib
     2 import matplotlib.pyplot as plt
     3 
     4 from skimage.data import page
     5 from skimage.filters import (threshold_otsu, threshold_niblack,
     6                              threshold_sauvola)
     7 
     8 
     9 matplotlib.rcParams['font.size'] = 9
    10 
    11 
    12 image = page()
    13 binary_global = image > threshold_otsu(image)
    14 
    15 window_size = 25
    16 thresh_niblack = threshold_niblack(image, window_size=window_size, k=0.8)
    17 thresh_sauvola = threshold_sauvola(image, window_size=window_size)
    18 
    19 binary_niblack = image > thresh_niblack
    20 binary_sauvola = image > thresh_sauvola
    21 
    22 plt.figure(figsize=(8, 7))
    23 plt.subplot(2, 2, 1)
    24 plt.imshow(image, cmap=plt.cm.gray)
    25 plt.title('Original')
    26 plt.axis('off')
    27 
    28 plt.subplot(2, 2, 2)
    29 plt.title('Global Threshold')
    30 plt.imshow(binary_global, cmap=plt.cm.gray)
    31 plt.axis('off')
    32 
    33 plt.subplot(2, 2, 3)
    34 plt.imshow(binary_niblack, cmap=plt.cm.gray)
    35 plt.title('Niblack Threshold')
    36 plt.axis('off')
    37 
    38 plt.subplot(2, 2, 4)
    39 plt.imshow(binary_sauvola, cmap=plt.cm.gray)
    40 plt.title('Sauvola Threshold')
    41 plt.axis('off')
    42 
    43 plt.show()

    结果图:

    6. IntegralThreshold (主要用于文本检测)

    使用方法: 运行下面网址的util.py文件

    https://github.com/Liang-yc/IntegralThreshold

    结果图:

    7.

  • 相关阅读:
    Redis的特点
    JavaScript语言和JQuery技术
    学习javaDay13
    学习JavaDay12
    学习JavaDay11
    学习JavaDay10
    学习JavaDay09
    学习JavaDay08
    java的语法基础(二)
    java语法基础(一)
  • 原文地址:https://www.cnblogs.com/ttweixiao-IT-program/p/12091820.html
Copyright © 2011-2022 走看看