zoukankan      html  css  js  c++  java
  • 剑指 Offer 60. n个骰子的点数

    一、题目描述

    把n个骰子扔在地上,所有骰子朝上一面的点数之和为s。输入n,打印出s的所有可能的值出现的概率。

    你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点数集合中第 i 小的那个的概率。

    示例 1:

    输入: 1
    输出: [0.16667,0.16667,0.16667,0.16667,0.16667,0.16667]
    示例 2:

    输入: 2
    输出: [0.02778,0.05556,0.08333,0.11111,0.13889,0.16667,0.13889,0.11111,0.08333,0.05556,0.02778]
     

    限制:

    1 <= n <= 11

    二:题目难度:中等

    三、题解

    方法一:回溯

    时间复杂度:O(6^n)

    空间复杂度:O(n)

    class Solution {
        HashMap<Integer,Integer> mp = new HashMap<>();
        int number;
        int pointSum = 0;public double[] dicesProbability(int n) {
            number = n;
            countPoint(1);
            double[] res = new double[mp.size()];
            // for(Map.Entry<Integer, Integer> entry : mp.entrySet()){
            //     System.out.println(entry.getKey()+" "+entry.getValue());
            // }
            int pos = 0;
            int sum = 0;
            for(Integer value : mp.values()){
                sum += value;
            }
            for(Integer value : mp.values()){
                res[pos] = value*1.0/sum;
                pos++;
            }
            return res;
        }
        public void countPoint(int i){
            if(i==number+1){
                mp.put(pointSum,mp.getOrDefault(pointSum,0)+1);
                return;
            }
            for(int s = 1;s<=6;s++){
                pointSum += s;
                countPoint(i+1);
                pointSum -= s;
            }
        }
    }

    但是n=11的时候会超时。

     方法二:动态规划

    时间复杂度:O(n^2)

    空间复杂度:O(n^2)

    dp[i][j]表示:第i个骰子出现和为j的次数
    dp[i][j] = dp[i-1][j-k](k = 1,2,3,...,6)

    边界值:dp[1][j] = 1; (j = 1,2,3,...,6)
     
    class Solution {
    public:
        vector<double> dicesProbability(int n) {
            vector<vector<int> > dp(n+1,vector<int>(6*(n+1)));
            for(int j=1;j<=6;j++)
                dp[1][j] = 1;
            for(int i = 2;i<=n;i++){
                for(int j = i;j<=6*i;j++){
                    for(int k=1;k<=6;k++){
                        if(j-k<=0)
                            break;
                        dp[i][j] += dp[i-1][j-k];
                    }
                }
            }
            int sum = pow(6.0,n);
            vector<double> ret;
            for(int i = n;i<=6*n;i++){
                ret.emplace_back(dp[n][i]*1.0/sum);
            }
            return ret;
        }
    };

  • 相关阅读:
    hdu4578线段树维护平方和,立方和(加,乘,赋值)或者珂朵莉树
    珂朵莉树(ODT老司机树)
    Codeforces Round #524 (Div. 2)D
    HDU1402 FFT高精度乘法模板题
    中国剩余定理poj1006
    POJ
    Install and Config MySQL 8 on Ubuntu
    Protobuf Examples
    Learning Thrift
    Flask Quickstart
  • 原文地址:https://www.cnblogs.com/ttzz/p/14508593.html
Copyright © 2011-2022 走看看