zoukankan      html  css  js  c++  java
  • TDOA 之TDOA算法python实现

    这里指的TDOA算法,实际是解两个双曲线方程,由于两个二次方程设计东西较多,如果强解,计算量很大,从网上参考了如下链接:

    算法推到:https://blog.csdn.net/lpsl1882/article/details/51519303

    Matlab实现:https://blog.csdn.net/chenxy_bwave/article/details/86650983

    我主要讲matlab 相关算法用python再次实现,后期TDOA上位机会基于Python去写

    import numpy as np
    import math
    import matplotlib.pyplot as plt
    
    def distance(x1,y1,x2,y2):
        dist =math.sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2))
        return dist
        
    x1 = 10
    y1 = 10 
    x2 = 240 
    y2 = 20 
    x3 = 124
    y3 = 250
    x  = 123
    y  = 134
    # 
    
    print(x1,y1,x2,y2,x3,y3,x,y)
    
    plt.scatter(x1,y1,label="1")
    plt.scatter(x2,y2,label="2")
    plt.scatter(x3,y3,label="3")
    plt.scatter(x,y,label="x")
    plt.legend()
    
    # 
    plt.plot([x1,x],[y1,y])
    plt.plot([x2,x],[y2,y])
    plt.plot([x,x3],[y,y3])
    
    r1 = distance(x1, y1, x, y)
    r2 = distance(x2, y2, x, y)
    r3 = distance(x3, y3, x, y)
    print("distance")
    print(r1,r2,r3)
    
    r21 = r2 - r1
    r31 = r3 - r1
    print(r21,r31)
     
    x21 = x2 - x1
    x31 = x3 - x1
    y21 = y2 - y1
    y31 = y3 - y1
    
    
    print([x21, x31, y21, y31])
    
    P1_tmp  = np.array([[x21,y21],[x31,y31]])
    print("P1_tmp:")
    print(P1_tmp)
    
    P1 = (-1)*linalg.inv(P1_tmp)
    print(P1)
    
    P2=  np.array([[r21], [r31]])
    print("P2")
    print(P2)
    
    K1  = x1*x1 + y1*y1;
    K2  = x2*x2 + y2*y2;
    K3  = x3*x3 + y3*y3;
    print(K1,K2,K3)
    
    P3 = np.array([ [ (-K2 + K1 + r21*r21)/2],  [(-K3 + K1 + r31*r31)/2 ]])
    print("P3:")
    print(P3)
    
    xy_esti = (np.dot(P1 , P2)) * r1 +np.dot( P1 , P3)
    
    print("xy_esti")
    #print(type(xy_esti[0]))
    print(int(xy_esti[0]),int(xy_esti[1]))  
    

      

    运行结果截图:

    标签节点无论是在三个基站组成的范围内还是范围外面,都能正确计算出结果。

    以上全部执行print以及绘图,所有时间开销为:Time used: 0.0519 秒

    将print 和 绘图去掉,单独计算坐标解算时间:Time used: 0.0013 秒

    测试机器:Win7,CPU:E5-2670

  • 相关阅读:
    JAVA 网格布局管理器
    JAVA 流式布局管理器
    JAVA 边界布局管理器
    JAVA 图形界面 JFrame容器
    MySQL联合查询语法内联、左联、右联、全联
    ASP.NET MVC URL重写与优化(进阶篇)-继承RouteBase玩转URL
    ASP.NET MVC URL重写与优化(初级篇)-使用Global路由表定制URL
    MVC过滤器详解
    Dapper的基本使用
    JQuery fullcalender文档
  • 原文地址:https://www.cnblogs.com/tuzhuke/p/11736097.html
Copyright © 2011-2022 走看看