zoukankan      html  css  js  c++  java
  • Android Art Hook 技术方案

    Android Art Hook 技术方案

     

    0x1 开始

    Anddroid上的ART从5.0之后变成默认的选择,可见ART的重要性,目前关于Dalvik Hook方面研究的文章很多,但我在网上却找不到关于ART Hook相关的文章,甚至连鼎鼎大名的XPosed和Cydia Substrate到目前为止也不支持ART的Hook。当然我相信,技术方案他们肯定是的,估计卡在机型适配上的了。

    既然网上找不到相关的资料,于是我决定自己花些时间去研究一下,终于黃天不负有心人,我找到了一个切实可行的方法,即本文所介绍的方法。

    应该说明的是本文所介绍的方法肯定不是最好的,但大家看完本文之后,如果能启发大家找到更好的ART Hook方法,那我抛砖引坏话的目的就达到了。废话不多说,我们开始吧。

    运行环境: 4.4.2 ART模式的模拟器 开发环境: Mac OS X 10.10.3

    0x2 ART类方法加载及执行

    在ART中类方法的执行要比在Dalvik中要复杂得多,Dalvik如果除去JIT部分,可以理解为是一个解析执行的虚拟机,而ART则同时包含本地指令执行和解析执行两种模式,同时所生成的oat文件也包含两种类型,分别是portable和quick。portable和quick的主要区别是对于方法的加载机制不相同,quick大量使用了Lazy Load机制,因此应用的启动速度更快,但加载流程更复杂。其中quick是作为默认选项,因此本文所涉及的技术分析都是基于quick类型的。

    由于ART存在本地指令执行和解析执行两种模式,因此类方法之间并不是能直接跳转的,而是通过一些预先定义的bridge函数进行状态和上下文的切换,这里引用一下老罗博客中的示意图:

    执行示意图

    当执行某个方法时,如果当前是本地指令执行模式,则会执行ArtMethod::GetEntryPointFromCompiledCode()指向的函数,否则则执行ArtMethod::GetEntryPointFromInterpreter()指向的函数。因此每个方法,都有两个入口点,分别保存在ArtMethod::entry_point_from_compiled_code_ArtMethod::entry_point_from_interpreter_。了解这一点非常重要,后面我们主要就是在这两个入口做文章。

    在讲述原理之前,需要先把以下两个流程了解清楚,这里的内容要展开是非常庞大的,我针对Hook的关键点,简明扼要的描述一下,但还是强烈建议大家去老罗的博客里细读一下其中关于ART的几篇文章。

    ArtMethod加载流程

    这个过程发生在oat被装载进内存并进行类方法链接的时候,类方法链接的代码在art/runtime/class_linker.cc中的LinkCode,如下所示:

    static void LinkCode(SirtRef& method, const OatFile::OatClass* oat_class, uint32_t method_index)
        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    
      // Method shouldn't have already been linked.
      DCHECK(method->GetEntryPointFromCompiledCode() == NULL);
      // Every kind of method should at least get an invoke stub from the oat_method.
      // non-abstract methods also get their code pointers.
      const OatFile::OatMethod oat_method = oat_class->GetOatMethod(method_index);
    
      // 这里默认会把method::entry_point_from_compiled_code_设置oatmethod的code
      oat_method.LinkMethod(method.get());
    
      // Install entry point from interpreter.
      Runtime* runtime = Runtime::Current();
      bool enter_interpreter = NeedsInterpreter(method.get(), method->GetEntryPointFromCompiledCode()); //判断方法是否需要解析执行
    
      // 设置解析执行的入口点
      if (enter_interpreter) {
        method->SetEntryPointFromInterpreter(interpreter::artInterpreterToInterpreterBridge);
      } else {
        method->SetEntryPointFromInterpreter(artInterpreterToCompiledCodeBridge);
      }
    
      // 下面是设置本地指令执行的入口点
      if (method->IsAbstract()) {
        method->SetEntryPointFromCompiledCode(GetCompiledCodeToInterpreterBridge());
        return;
      }
    
      // 这里比较难理解,如果是静态方法,但不是clinit,但需要把entry_point_from_compiled_code_设置为GetResolutionTrampoline的返回值
      if (method->IsStatic() && !method->IsConstructor()) {
        // For static methods excluding the class initializer, install the trampoline.
        // It will be replaced by the proper entry point by ClassLinker::FixupStaticTrampolines
        // after initializing class (see ClassLinker::InitializeClass method).
        method->SetEntryPointFromCompiledCode(GetResolutionTrampoline(runtime->GetClassLinker()));
      } else if (enter_interpreter) {
        // Set entry point from compiled code if there's no code or in interpreter only mode.
        method->SetEntryPointFromCompiledCode(GetCompiledCodeToInterpreterBridge());
      }
    
      if (method->IsNative()) {
        // Unregistering restores the dlsym lookup stub.
        method->UnregisterNative(Thread::Current());
      }
    
      // Allow instrumentation its chance to hijack code.
      runtime->GetInstrumentation()->UpdateMethodsCode(method.get(),method->GetEntryPointFromCompiledCode());
    }

    通过上面的代码我们可以得到,一个ArtMethod的入口主要有以下几种:

    Interpreter2Interpreter对应artInterpreterToInterpreterBridge(art/runtime/interpreter/interpreter.cc); Interpreter2CompledCode对应artInterpreterToCompiledCodeBridge(/art/runtime/entrypoints/interpreter/interpreter_entrypoints.cc); CompliedCode2Interpreter对应art_quick_to_interpreter_bridge(art/runtime/arch/arm/quick_entrypoints_arm.S); CompliedCode2ResolutionTrampoline对应art_quick_resolution_trampoline(art/runtime/arch/arm/quick_entrypoints_arm.S); CompliedCode2CompliedCode这个入口是直接指向oat中的指令,详细可见OatMethod::LinkMethod;

    其中调用约定主要有两种,分别是:

    typedef void (EntryPointFromInterpreter)(Thread* self, MethodHelper& mh, const DexFile::CodeItem* code_item, ShadowFrame* shadow_frame, JValue* result), 这种对应上述1,3两种入口;

    剩下的2,4,5三种入口对应的是CompledCode的入口,代码中并没有直接给出,但我们通过分析ArtMethod::Invoke的方法调用,就可以知道其调用约定了。Invoke过程中会调用art_quick_invoke_stub(/art/runtime/arch/arm/quick_entrypoints_arm.S),代码如下所示:

     /*
     * Quick invocation stub.
     * On entry:
     *   r0 = method pointer
     *   r1 = argument array or NULL for no argument methods
     *   r2 = size of argument array in bytes
     *   r3 = (managed) thread pointer
     *   [sp] = JValue* result
     *   [sp + 4] = result type char
     */
    ENTRY art_quick_invoke_stub
    push   {r0, r4, r5, r9, r11, lr}       @ spill regs
    .save  {r0, r4, r5, r9, r11, lr}
    .pad #24
    .cfi_adjust_cfa_offset 24
    .cfi_rel_offset r0, 0
    .cfi_rel_offset r4, 4
    .cfi_rel_offset r5, 8
    .cfi_rel_offset r9, 12
    .cfi_rel_offset r11, 16
    .cfi_rel_offset lr, 20
    mov    r11, sp                         @ save the stack pointer
    .cfi_def_cfa_register r11
    mov    r9, r3                          @ move managed thread pointer into r9
    mov    r4, #SUSPEND_CHECK_INTERVAL     @ reset r4 to suspend check interval
    add    r5, r2, #16                     @ create space for method pointer in frame
    and    r5, #0xFFFFFFF0                 @ align frame size to 16 bytes
    sub    sp, r5                          @ reserve stack space for argument array
    add    r0, sp, #4                      @ pass stack pointer + method ptr as dest for memcpy
    bl     memcpy                          @ memcpy (dest, src, bytes)
    ldr    r0, [r11]                       @ restore method*
    ldr    r1, [sp, #4]                    @ copy arg value for r1
    ldr    r2, [sp, #8]                    @ copy arg value for r2
    ldr    r3, [sp, #12]                   @ copy arg value for r3
    mov    ip, #0                          @ set ip to 0
    str    ip, [sp]                        @ store NULL for method* at bottom of frame
    ldr    ip, [r0, #METHOD_CODE_OFFSET]   @ get pointer to the code
    blx    ip                              @ call the method
    mov    sp, r11                         @ restore the stack pointer
    ldr    ip, [sp, #24]                   @ load the result pointer
    strd   r0, [ip]                        @ store r0/r1 into result pointer
    pop    {r0, r4, r5, r9, r11, lr}       @ restore spill regs
    .cfi_adjust_cfa_offset -24
    bx     lr
    END art_quick_invoke_stub

    “ldr ip, [r0, #METHOD_CODE_OFFSET]”其实就是把ArtMethod::entry_point_from_compiled_code_赋值给ip,然后通过blx直接调用。通过这段小小的汇编代码,我们得出如下堆栈的布局:

       -(low)
       | caller(Method *)   | <- sp 
       | arg1               | <- r1
       | arg2               | <- r2
       | arg3               | <- r3
       | ...                | 
       | argN               |
       | callee(Method *)   | <- r0
       +(high)

    这种调用约定并不是平时我们所见的调用约定,主要体现在参数当超过4时,并不是从sp开始保存,而是从sp + 20这个位置开始存储,所以这就是为什么在代码里entry_point_from_compiled_code_的类型是void *的原因了,因为无法用代码表示。

    理解好这个调用约定对我们方案的实现至头重要

    ArtMethod执行流程

    上面详细讲述了类方法加载和链接的过程,但在实际执行的过程中,其实还不是直接调用ArtMethod的entry_point(解析执行和本地指令执行的入口),为了加快执行速度,ART为oat文件中的每个dex创建了一个DexCache(art/runtime/mirror/dex_cache.h)结构,这个结构会按dex的结构生成一系列的数组,这里我们只分析它里面的methods字段。 DexCache初始化的方法是Init,实现如下:

    void DexCache::Init(const DexFile* dex_file,
                        String* location,
                        ObjectArray* strings,
                        ObjectArray* resolved_types,
                        ObjectArray* resolved_methods,
                        ObjectArray* resolved_fields,
                        ObjectArray* initialized_static_storage) {
      //...
      //...
      Runtime* runtime = Runtime::Current();
      if (runtime->HasResolutionMethod()) {
        // Initialize the resolve methods array to contain trampolines for resolution.
        ArtMethod* trampoline = runtime->GetResolutionMethod();
        size_t length = resolved_methods->GetLength();
        for (size_t i = 0; i < length; i++) {
          resolved_methods->SetWithoutChecks(i, trampoline);
        }
      }
    }

    根据dex方法的个数,产生相应长度resolved_methods数组,然后每一个都用Runtime::GetResolutionMethod()返回的结果进行填充,这个方法是由Runtime::CreateResolutionMethod产生的,代码如下:

    mirror::ArtMethod* Runtime::CreateResolutionMethod() {
      mirror::Class* method_class = mirror::ArtMethod::GetJavaLangReflectArtMethod();
      Thread* self = Thread::Current();
      SirtRef
          method(self, down_cast<mirror::artmethod*>(method_class->AllocObject(self)));
      method->SetDeclaringClass(method_class);
      // TODO: use a special method for resolution method saves
      method->SetDexMethodIndex(DexFile::kDexNoIndex);
      // When compiling, the code pointer will get set later when the image is loaded.
      Runtime* r = Runtime::Current();
      ClassLinker* cl = r->GetClassLinker();
      method->SetEntryPointFromCompiledCode(r->IsCompiler() ? NULL : GetResolutionTrampoline(cl));
      return method.get();
    }

    从method->SetDexMethodIndex(DexFile::kDexNoIndex)这句得知,所有的ResolutionMethod的methodIndexDexFile::kDexNoIndex。而ResolutionMethod的entrypoint就是我们上面入口分析中的第4种情况,GetResolutionTrampoline最终返回的入口为art_quick_resolution_trampoline(art/runtime/arch/arm/quick_entrypoints_arm.S)。我们看一下其实现代码:

        .extern artQuickResolutionTrampoline
    ENTRY art_quick_resolution_trampoline
        SETUP_REF_AND_ARGS_CALLEE_SAVE_FRAME
        mov     r2, r9                 @ pass Thread::Current
        mov     r3, sp                 @ pass SP
        blx     artQuickResolutionTrampoline  @ (Method* called, receiver, Thread*, SP)
        cbz     r0, 1f                 @ is code pointer null? goto exception
        mov     r12, r0
        ldr  r0, [sp, #0]              @ load resolved method in r0
        ldr  r1, [sp, #8]              @ restore non-callee save r1
        ldrd r2, [sp, #12]             @ restore non-callee saves r2-r3
        ldr  lr, [sp, #44]             @ restore lr
        add  sp, #48                   @ rewind sp
        .cfi_adjust_cfa_offset -48
        bx      r12                    @ tail-call into actual code
    1:
        RESTORE_REF_AND_ARGS_CALLEE_SAVE_FRAME
        DELIVER_PENDING_EXCEPTION
    END art_quick_resolution_trampoline
    

    调整好寄存器后,直接跳转至artQuickResolutionTrampoline(art/runtime/entrypoints/quick/quick_trampoline_entrypoints.cc),接下来我们分析这个方法的实现(大家不要晕了。。。,我会把无关紧要的代码去掉):

    // Lazily resolve a method for quick. Called by stub code.
    extern C const void* artQuickResolutionTrampoline(mirror::ArtMethod* called,
                                                        mirror::Object* receiver,
                                                        Thread* thread, mirror::ArtMethod** sp)
        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
      FinishCalleeSaveFrameSetup(thread, sp, Runtime::kRefsAndArgs);
      // Start new JNI local reference state
      JNIEnvExt* env = thread->GetJniEnv();
      ScopedObjectAccessUnchecked soa(env);
      ScopedJniEnvLocalRefState env_state(env);
      const char* old_cause = thread->StartAssertNoThreadSuspension(Quick method resolution set up);
    
      // Compute details about the called method (avoid GCs)
      ClassLinker* linker = Runtime::Current()->GetClassLinker();
      mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
      InvokeType invoke_type;
      const DexFile* dex_file;
      uint32_t dex_method_idx;
      if (called->IsRuntimeMethod()) {
        //...
        //...
      } else {
        invoke_type = kStatic;
        dex_file = &MethodHelper(called).GetDexFile();
        dex_method_idx = called->GetDexMethodIndex();
      }
    
      //...
    
      // Resolve method filling in dex cache.
      if (called->IsRuntimeMethod()) {
        called = linker->ResolveMethod(dex_method_idx, caller, invoke_type);
      }
    
      const void* code = NULL;
      if (LIKELY(!thread->IsExceptionPending())) {
        //...
    
        linker->EnsureInitialized(called_class, true, true);
    
        //...
      }
      // ...
      return code;
    }
    
    inline bool ArtMethod::IsRuntimeMethod() const {
      return GetDexMethodIndex() == DexFile::kDexNoIndex;
    }

    called->IsRuntimeMethod()用于判断当前方法是否为ResolutionMethod。如果当前ResolutionMethod,那么就走ClassLinker::ResolveMethod流程去获取真正的方法,见代码:

    mirror::ArtMethod* ClassLinker::ResolveMethod(const DexFile& dex_file,
                                                       uint32_t method_idx,
                                                       mirror::DexCache* dex_cache,
                                                       mirror::ClassLoader* class_loader,
                                                       const mirror::ArtMethod* referrer,
                                                       InvokeType type) {
      DCHECK(dex_cache != NULL);
      // Check for hit in the dex cache.
      mirror::ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx);
      if (resolved != NULL) {
        return resolved;
      }
      // Fail, get the declaring class.
      const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
      mirror::Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader);
    
      if (klass == NULL) {
        DCHECK(Thread::Current()->IsExceptionPending());
        return NULL;
      }
    
      // Scan using method_idx, this saves string compares but will only hit for matching dex
      // caches/files.
      switch (type) {
        case kDirect:  // Fall-through.
        case kStatic:
          resolved = klass->FindDirectMethod(dex_cache, method_idx);
          break;
        case kInterface:
          resolved = klass->FindInterfaceMethod(dex_cache, method_idx);
          DCHECK(resolved == NULL || resolved->GetDeclaringClass()->IsInterface());
          break;
        case kSuper:  // Fall-through.
        case kVirtual:
          resolved = klass->FindVirtualMethod(dex_cache, method_idx);
          break;
        default:
          LOG(FATAL) << Unreachable - invocation type:  << type;
      }
    
      if (resolved == NULL) {
        // Search by name, which works across dex files.
        const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
        std::string signature(dex_file.CreateMethodSignature(method_id.proto_idx_, NULL));
        switch (type) {
          case kDirect:  // Fall-through.
          case kStatic:
            resolved = klass->FindDirectMethod(name, signature);
            break;
          case kInterface:
            resolved = klass->FindInterfaceMethod(name, signature);
            DCHECK(resolved == NULL || resolved->GetDeclaringClass()->IsInterface());
            break;
          case kSuper:  // Fall-through.
          case kVirtual:
            resolved = klass->FindVirtualMethod(name, signature);
            break;
        }
      }
    
    
      if (resolved != NULL) {
        // Be a good citizen and update the dex cache to speed subsequent calls.
        dex_cache->SetResolvedMethod(method_idx, resolved);
        return resolved;
      } else {
        // ...
        }
    }
    

    其实这里发生的是一个“连锁反应”。ClassLinker::ResolveType走的其实是类似解析流程,有兴趣的朋友可以跟一下。
    找到解析后的klass,再经过一轮疯狂的搜索,把找到的resolved通过DexCache::SetResolvedMethod覆盖掉之前的“替身”。当再下次再通过ResolveMethod解析方法时,就可以直接把该方法返回,不需要再解析了。

    我们回过头来再重新“复现”一下这个过程,当我们首次调用某个类方法,其过程如下所示:

    调用ResolutionMethod的entrypoint,进入art_quick_resolution_trampoline; art_quick_resolution_trampoline跳转到artQuickResolutionTrampoline; artQuickResolutionTrampoline调用ClassLinker::ResolveMethod解析类方法; ClassLinker::ResolveMethod调用ClassLinkder::ResolveType解析类,再从解析好的类寻找真正的方法; 调用DexCache::SetResolvedMethod,用真正的方法覆盖掉“替身”方法; 调用真正方法的entrypoint代码;

    也许你会问,为什么要把过程搞得这么绕? 一切都是为了延迟加载,提高启动速度,这个过程跟ELF Linker的PLT/GOT符号重定向的过程是何其相似啊,所以技术都是想通的,一通百明。

    0x3 Hook ArtMethod

    通过上述ArtMethod加载和执行两个流程的分析,对于如何Hook ArtMethod,我想到了两个方案,分别

    修改DexCach里的methods,把里面的entrypoint修改为自己的,做一个中转处理; 直接修改加载后的ArtMethod的entrypoint,同样做一个中转处理;

    上面两个方法都是可行的,但由于我希望整个项目可以在NDK环境(而不是在源码下)下编译,因为就采用了方案2,因为通过JNI的接口就可以直接获取解析之后的ArtMethod,可以减少很多文件依赖。

    回到前面的调用约定,每个ArtMethod都有两个约定,按道理我们应该准备两个中转函数的,但这里我们不考虑强制解析模式执行,所以只要处理好entry_point_from_compiled_code的中转即可。

    首先,我们找到对应的方法,先保存其entrypoint,然后再把我们的中转函数art_quick_dispatcher覆盖,代码如下所示:

    extern int __attribute__ ((visibility (hidden))) art_java_method_hook(JNIEnv* env, HookInfo *info) {
        const char* classDesc = info->classDesc;
        const char* methodName = info->methodName;
        const char* methodSig = info->methodSig;
        const bool isStaticMethod = info->isStaticMethod;
    
        // TODO we can find class by special classloader what do just like dvm
        jclass claxx = env->FindClass(classDesc);
        if(claxx == NULL){
            LOGE([-] %s class not found, classDesc);
            return -1;
        }
    
        jmethodID methid = isStaticMethod ?
                env->GetStaticMethodID(claxx, methodName, methodSig) :
                env->GetMethodID(claxx, methodName, methodSig);
    
        if(methid == NULL){
            LOGE([-] %s->%s method not found, classDesc, methodName);
            return -1;
        }
    
        ArtMethod *artmeth = reinterpret_cast(methid);
    
        if(art_quick_dispatcher != artmeth->GetEntryPointFromCompiledCode()){
            uint64_t (*entrypoint)(ArtMethod* method, Object *thiz, u4 *arg1, u4 *arg2);
            entrypoint = (uint64_t (*)(ArtMethod*, Object *, u4 *, u4 *))artmeth->GetEntryPointFromCompiledCode();
    
            info->entrypoint = (const void *)entrypoint;
            info->nativecode = artmeth->GetNativeMethod();
    
            artmeth->SetEntryPointFromCompiledCode((const void *)art_quick_dispatcher);
    
            // save info to nativecode :)
            artmeth->SetNativeMethod((const void *)info);
    
            LOGI([+] %s->%s was hooked
    , classDesc, methodName);
        }else{
            LOGW([*] %s->%s method had been hooked, classDesc, methodName);
        }
    
        return 0;
    }

    我们关键的信息保存在通过ArtMethod::SetNativeMethod保存起来了。

    考虑到ART特殊的调用约定,art_quick_dispatcher只能用汇编实现了,把寄存器适当的调整了一下,再跳转到另一个函数artQuickToDispatcher,这样就可以很方便用c/c++访问参数了。

    先看一下art_quick_dispatcher函数的实现如下:

    /*
     * Art Quick Dispatcher.
     * On entry:
     *   r0 = method pointer
     *   r1 = arg1
     *   r2 = arg2
     *   r3 = arg3
     *   [sp] = method pointer
     *   [sp + 4] = addr of thiz
     *   [sp + 8] = addr of arg1
     *   [sp + 12] = addr of arg2
     *   [sp + 16] = addr of arg3
     * and so on
     */
        .extern artQuickToDispatcher
    ENTRY art_quick_dispatcher
        push    {r4, r5, lr}           @ sp - 12
        mov     r0, r0                 @ pass r0 to method
        str     r1, [sp, #(12 + 4)]
        str     r2, [sp, #(12 + 8)]
        str     r3, [sp, #(12 + 12)]
        mov     r1, r9                 @ pass r1 to thread
        add     r2, sp, #(12 + 4)      @ pass r2 to args array
        add     r3, sp, #12            @ pass r3 to old SP
        blx     artQuickToDispatcher   @ (Method* method, Thread*, u4 **, u4 **)
        pop     {r4, r5, pc}           @ return on success, r0 and r1 hold the result
    END art_quick_dispatcher

    我把r2指向参数数组,这样就我们就可以非常方便的访问所有参数了。另外,我用r3保存了旧的sp地址,这样是为后面调用原来的entrypoint做准备的。我们先看看artQuickToDispatcher的实现:

    extern C uint64_t artQuickToDispatcher(ArtMethod* method, Thread *self, u4 **args, u4 **old_sp){
        HookInfo *info = (HookInfo *)method->GetNativeMethod();
        LOGI([+] entry ArtHandler %s->%s, info->classDesc, info->methodName);
    
        // If it not is static method, then args[0] was pointing to this
        if(!info->isStaticMethod){
            Object *thiz = reinterpret_cast(args[0]);
            if(thiz != NULL){
                char *bytes = get_chars_from_utf16(thiz->GetClass()->GetName());
                LOGI([+] thiz class is %s, bytes);
                delete bytes;
            }
        }
    
        const void *entrypoint = info->entrypoint;
        method->SetNativeMethod(info->nativecode); //restore nativecode for JNI method
        uint64_t res = art_quick_call_entrypoint(method, self, args, old_sp, entrypoint);
    
        JValue* result = (JValue* )&res;
        if(result != NULL){
            Object *obj = result->l;
            char *raw_class_name = get_chars_from_utf16(obj->GetClass()->GetName());
    
            if(strcmp(raw_class_name, java.lang.String) == 0){
                char *raw_string_value = get_chars_from_utf16((String *)obj);
                LOGI(result-class %s, result-value %s, raw_class_name, raw_string_value);
                free(raw_string_value);
            }else{
                LOGI(result-class %s, raw_class_name);
            }
    
            free(raw_class_name);
        }
    
        // entrypoid may be replaced by trampoline, only once.
    //  if(method->IsStatic() && !method->IsConstructor()){
    
        entrypoint = method->GetEntryPointFromCompiledCode();
        if(entrypoint != (const void *)art_quick_dispatcher){
            LOGW([*] entrypoint was replaced. %s->%s, info->classDesc, info->methodName);
    
            method->SetEntryPointFromCompiledCode((const void *)art_quick_dispatcher);
            info->entrypoint = entrypoint;
            info->nativecode = method->GetNativeMethod();
        }
    
        method->SetNativeMethod((const void *)info);
    
    //  }
    
        return res;
    }

    这里参数解析就不详细说了,接下来是最棘手的事情,如何重新调回原来的entrypoint。

    这里的关键是要还原之前的堆栈布局,art_quick_call_entrypoint就是负责完成这个工作的,其实现如下所示:

    /*
     *
     * Art Quick Call Entrypoint
     * On entry:
     *  r0 = method pointer
     *  r1 = thread pointer
     *  r2 = args arrays pointer
     *  r3 = old_sp
     *  [sp] = entrypoint
     */
    ENTRY art_quick_call_entrypoint
        push    {r4, r5, lr}           @ sp - 12
        sub     sp, #(40 + 20)         @ sp - 40 - 20
        str     r0, [sp, #(40 + 0)]    @ var_40_0 = method_pointer
        str     r1, [sp, #(40 + 4)]    @ var_40_4 = thread_pointer
        str     r2, [sp, #(40 + 8)]    @ var_40_8 = args_array
        str     r3, [sp, #(40 + 12)]   @ var_40_12 = old_sp
        mov     r0, sp
        mov     r1, r3
        ldr     r2, =40
        blx     memcpy                 @ memcpy(dest, src, size_of_byte)
        ldr     r0, [sp, #(40 + 0)]    @ restore method to r0
        ldr     r1, [sp, #(40 + 4)]
        mov     r9, r1                 @ restore thread to r9
        ldr     r5, [sp, #(40 + 8)]    @ pass r5 to args_array
        ldr     r1, [r5]               @ restore arg1
        ldr     r2, [r5, #4]           @ restore arg2
        ldr     r3, [r5, #8]           @ restore arg3
        ldr     r5, [sp, #(40 + 20 + 12)] @ pass ip to entrypoint
        blx     r5
        add     sp, #(40 + 20)
        pop     {r4, r5, pc}           @ return on success, r0 and r1 hold the result
    END art_quick_call_entrypoint

    这里我偷懒了,直接申请了10个参数的空间,再使用之前传进入来的old_sp进行恢复,使用memcpy直接复制40字节。之后就是还原r0, r1, r2, r3, r9的值了。调用entrypoint完后,结果保存在r0和r1,再返回给artQuickToDispatcher。

    至此,整个ART Hook就分析完毕了。

    0x4 4.4与5.X上实现的区别

    我的整个方案都是在4.4上测试的,主要是因为我只有4.4的源码,而且硬盘空间不足,实在装不下5.x的源码了。但整个思路,是完全可以套用用5.X上。另外,5.X的实现代码比4.4上复杂了很多,否能像我这样在NDK下编译完成就不知道了。

    正常的4.4模拟器是以dalvik启动的,要到设置里改为art,这里会要求进行重启,但一般无效,我们手动关闭再重新打开就OK了,但需要等上一段时间才可以。

    0x5 结束

    虽然这篇文章只是介绍了Art Hook的技术方案,但其中的技术原理,对于如何在ART上进行代码加固、动态代码原理等等也是很有启发性。

  • 相关阅读:
    大规模机器学习
    机器学习之推荐系统
    SVM实现邮件分类
    机器学习之异常检测
    降维算法学习
    手写数字识别实现
    动态规划训练之十七
    概率期望训练之三
    数据结构训练之四
    绵阳东辰国际test201910.25
  • 原文地址:https://www.cnblogs.com/twlqx/p/4449451.html
Copyright © 2011-2022 走看看